Along the Murray-Darling in a ‘bot

Launch of the Museum Robot, Landmarks Gallery, ActonIt’s a big place, the Murray-Darling Basin. Over a million km2 – about one-seventh of the whole of Australia. There’s a lot to know about it, and we’re helping students find out more for themselves, using a novel CSIRO innovation.

The National Museum of Australia and the Murray-Darling Basin Authority have teamed up to let students learn about this vast area, taking students on an interactive, customised tour of the Museum’s Murray-Darling Basin exhibits. But the really cool part? The students never have to leave their classrooms.

Using our Telepresence robot technology, museum staff are able to broadcast real-time images, video and audio back to students in their classrooms. Students can learn about how the Basin’s water movement and volume has varied over the past 300 000 years, and the importance of water quality and its role in determining where human settlements develop and whether they survive and prosper.

This is a new departure for the robots. In the past, they’ve mainly been used to give a taste of the museum to people in remote areas who can’t easily travel there. Now they’re letting students get an understanding of the broader Murray-Darling picture.

It works this way. The museum robot (accompanied by education staff) takes the remote visitors on a virtual tour of the museum.

The robot has a high speed broadband connection, so remote visitors can interact with a human educator in the museum. The human educator leads the robot, while the remote visitors use a panoramic camera to look around and explore.  Launch of the Museum Robot, Landmarks Gallery, Acton

In an ultimate case of ‘look but don’t touch’ students can see and interact with information about each of the objects on display.

The best thing is that it’s a conversation, not a monologue with pictures. The museum educator can engage and challenge the students by posing multiple-choice questions, polling and viewing the student’s responses in real-time.

We’re doing a lot of work on digital immersive learning. Apart from the Telepresence robots, we’re working with science education experts to develop learning environments that mirror real-life places. These 3D models of real places will be created using our award winning laser mapping technology Zebedee and panoramic video to create the immersive environment. We’ve already taken students through Jenolan Caves from the safety of their own classrooms.

Almost makes you wish you were back at school again …

Usability – it has its own day, but what is it?

smartphones_322Today is World Usability Day (WUD). WUD celebrates the technologies, products and services that improve our lives by doing what they’re designed to do in a way that engages and assists us. And more importantly, it’s a day for encouraging creators, designers and manufacturers to put usability at the forefront when they’re making products.

We’re pretty proud of some of our useable technology – like our smartphone apps. We’re leveraging a technology that’s well on the way from being popular to being ubiquitous, and creating applications and services that can make a big difference to a wide range of people.

Take people who’ve had heart attacks, for instance. Nowadays, a lot more people survive heart attacks than in the past, but post-heart attack rehab remains a problem. It used to involve travelling to an outpatient clinic or similar centre, and there was a considerable dropout rate from the program. This is a problem, because patients who successfully complete cardiac rehab following a heart attack have much better health outcomes.

They are less likely to have another cardiac event, be readmitted to hospital or die from their condition. So we developed a smartphone home care delivery model – known as the Care Assessment Platform. A clinical trial found that people were almost 30 per cent more likely to take part in their rehab program at home using the app than those who had to travel to a clinic.

What’s more, people using the app were 40 per cent more likely to stick to the program and almost 70 per cent more likely to see it through to completion. That’s REAL usability.

Of course, the best treatment for heart attacks is not having one in the first place. As we all know, weight is a factor in heart disease. And certainly, keeping your weight down is a very, very good thing to do after a heart attack. We’re hoping we can help there too.

We’re currently working with Bupa Health Foundation on a trial of smartphone apps to assist with dieters’ mood and motivation. Face-to-face support is often the best way to succeed on a diet, but this is not always possible, and it can get expensive.

old handsBut a weight loss app can give advice at a single swipe, providing regular daily reminders and support.

So you’ve survived a heart attack and done the rehab using an app. And you’ve lost weight. That means you’ve got more chance of living to be old. We’ve been working on apps to help with that, too.

Our Smarter, Safer Homes project is looking at ways to keep older people living safely in their own homes for longer. This not only takes pressure off the aged care home sector, but also improves older people’s health and wellbeing.

Our app involves placing simple sensors such as motion detectors and energy sensors placed around the home. These monitor the person as they go about their day and report the data back to family members or carers.

For example, motion sensors can detect whether a person got up at the usual time, put the kettle on, regularly cooked food for themselves, and even if they left the oven on.

The data is also reported to a tablet device owned by the elderly person, who retains full control over what data gets reported to others and what stays private.

SoilMapp screen

SoilMapp screen

Not all our work on apps is in human health. There’s one for soil health too. SoilMapp is designed to make soil information more accessible for Australian farmers, consultants, planners, natural resource managers, researchers and people

interested in soil. It provides direct access to the best national soil data and information from several sources.

With SoilMapp, users can find information on soil depth, acidity, salinity, soil carbon, soil water holding capacity and other attributes in a matter of minutes, anywhere there’s a wireless or internet connection.

We’ve also counted koalas using an app, and we’re looking at doing many more things with this technology.

Even the first version of the iPhone had more computing power than all of NASA had for the Apollo 11 mission, so there’s plenty of opportunity to make use of the potential of smartphones. That very usable thing in your pocket just keeps on getting more so.

The Adventures of Rosetta and Philae

Artist's impression of the Philae lander on the surface of the comet. Image: ESA

The European Space Agency is set to make a daring attempt to land the Philae probe on the surface of an icy comet.

The giant antenna dishes of the Canberra Deep Space Communication Complex are supporting the European Space Agency’s Rosetta spacecraft, relaying data that the refrigerator-sized Philae probe has commenced its descent to the unknown surface of Comet 67-P Churyumov-Gerasimenko.

Nearly 450 million kilometres from Earth and travelling at 18 kilometres per second, the bizarre ice, dust and rock strewn surface of the 5 kilometre long, 10 billion tonne comet called Churyumov-Gerasimenko will be stage for one of the most daring landing attempts in the history of space exploration.

The Rosetta spacecraft drops off the Philae lander for a 7 hour descent towards the comet's surface. Image: ESA

After a 10-year journey, the European Space Agency’s (ESA) Rosetta spacecraft arrived at the comet (also known as Comet 67P) in August 2014. For the past several months Rosetta scientists have been using the spacecraft’s instruments to analyse and photograph the comet’s surface looking for a potential landing site. Several candidate locations were chosen but one, ‘Site J’, seemed to present the best chance for a successful touchdown of Rosetta’s ‘Philae’ probe on the comet’s unexplored surface.

Comet 67P Churyumov Gerasimenko is a relative newcomer to the inner solar system, possibly originating from the Oort Cloud. Image: ESA

Site J, now called Agilkia (after an island in the Nile River), however, only offers the instrument-laden Philae lander a 75% chance of a safe touchdown at 3.02am (AEDST) on Thursday 13th November. Low gravity, car-sized boulders, 30 metre cliffs, deep holes and an unknown surface composition are just some hazards that the unaided robotic probe will have to face.

Keeping an eye on events as they unfold will be the giant antenna dishes of NASA’s Deep Space Network and those of the European Space Agency, which have tracked the spacecraft throughout its 10 year adventure.

Deep Space Station 34 in Canberra is supporting the European Space Agency's daring comet mission. Image: NASA/JPL

At the CSIRO-managed Canberra Deep Space Communication Complex (CDSCC), Deep Space Station 34 (DSS34) will listen in on relayed signals from the Rosetta mothercraft as it releases the Philae probe on a 7-hour descent towards the comet’s surface. Along withESA’s New Norcia antenna near Perth, separation of the two craft will be confirmed late Wednesday evening (12th November). DSS34 will provide ongoing back-up communication coverage between the Rosetta/Philae spacecraft and the anxious science team located at ESA’s mission control centre in Darmstadt, Germany.

The path Philae will take to the comet's surface. Image: ESA

As the Earth continues to turn and the spacecraft fall out of Australia’s view, the Canberra and New Norcia antennas will hand over to sister stations in Spain and Argentina for the last leg of the journey and the historic touchdown signal on Thursday morning (13th November).

Follow the adventures of Rosetta and Philae. Image: ESA

The European Space Agency has been doing a remarkable job engaging the public in this great adventure. You can following along with the events of Rosetta and Philae’s great adventure on their mission blog. ESA is also broadcasting live coverage of the descent and landing. Updates also via Twitter – Rosetta | Philae

This originally appeared on the CSIRO Universe blog.

Making molecules crystal clear

A crystal image of a breakdown pathway of atrazine

A crystal image of a breakdown pathway of atrazine

The International Year of Crystallography is drawing to a close, and we’re not going to let it finish without showing you something about what crystallographers do. Which is not what most people would assume when they hear the word: there are crystals involved, but it’s not exactly the study of crystals as we generally think of them. It’s the study of how matter is organised, using crystals as a tool.

Now, naturally we want to know how matter is arranged. Apart from being very, very interesting to find out about, it also helps in many different fields, from drug delivery to materials science. In fact, it was crystallography that provided – controversially – the key to understanding the structure of DNA.

So assume you want to look at something in the greatest possible detail, seeing its smallest possible components. Obviously, you’d use a microscope. But there’s a limit to the smallness of things you can see that way: the wavelength of the light human eyes see. Visible light has a frequency of between roughly 400 and 700 nanometres, and can’t detect atoms, which are separated by 0.1 nanometres. This is the perfect frequency for X-rays.

We can’t make appropriate X-ray lenses to make x-ray microscopes to study molecules: we have to do it in a roundabout way. We beam X-rays onto crystals, scattering the rays, in just the same way that light reflects when it hits an object. Then we use a computer to reassemble the rays —the diffraction pattern —into an image. The diffraction of a single molecule would be so weak that we couldn’t get any meaningful information from it, so we use crystals, which have many molecules in an ordered array, to amplify the signal so we can see it. Crystals are highly ordered structures, made up of 1012 or more molecules, makes the x-ray diffraction patterns — the main tool of crystallography —possible to analyse.

Crystallographers were among the first scientists to use computers, and used them to do the advanced calculations needed to reassemble diffraction patterns into coherent images. That’s why it seemed fitting to name our supercomputer after the founders of crystallography – Lawrence and Henry Bragg. Lawrence was the first person to solve a molecular structure using x-ray diffraction.

Today we can not only view molecules in 3D, but also study the way they operate. Improvements in x-ray machines have also led to synchrotron facilities, which can produce far more efficient and precise beams.

And speaking of synchrotrons …

One of our crystallographers, Tom Peat, has deposited more than 120 structures in the Protein Data Bank using data collected at the Australian Synchrotron. They were all derived from crystals developed in CSIRO’s Collaborative Crystallisation Centre.

This is one of our favourite structures.

AtzF structure (the Australia crystal)

AtzF structure (the Australia crystal)

It’s the structure of AtzF. This enzyme forms part of the breakdown pathway for atrazine, a commonly used herbicide. We’re trying to understand enzymes better and use them for bioremediation – cleaning up environmental detritus such as pesticides and herbicides – and we’ve now solved the structures of four of the six enzymes involved in the atrazine breakdown pathway. We also look at protein engineering, to see if we can make these enzymes even more effective at cleaning up the environment.

Before we get to the crystal image, there are other steps on the way. First, someone has to grow the crystals (clone the protein, express it, purify it and crystallise it). Then it’s off to the Synchrotron to get a data set (many diffraction images in sequence). Here you can see an actual protein crystal.

An actual protein crystal

An actual protein crystal

The picture on the right is the diffraction image.

Diffraction image

Diffraction image

The crystallographers measure the intensity of the reflections (the dark dots). They combine that with the geometry and use some complicated maths (a Fourier Transform) to produce an electron density map. They then use that map to build a model.

Not all our crystallography work is in the same area. We also work on some pharmaceutical applications. One of our projects, with hugely important implications for human health, is on the design of desperately needed new antibiotics.  We’ve been collaborating with Monash University, looking at the pathway that sulpha drugs (such as sulfamethoxazole)– the ones we used to treat bacterial infections prior to the discovery of penicillin – take to treat Golden Staph infections in humans. The aim is to design new antibiotics that target the same pathway. You can read a paper that describes our recent findings in the Journal of Medicinal Chemistry, and here’s a picture of what we’ve been doing.

Golden Staph treatment pathway

Golden Staph treatment pathway

We think this deserves its own Year. And we hope it’s clear just how important it is. Crystal clear.

Insects are the great survivors in evolution: new study

By David Yeates, CSIRO

The Australian Emperor Dragonfly is only a handful compared to its ancestors who measured more than 60cm. Flickr/Daniel lightscaper, CC BY

The Australian Emperor Dragonfly is only a handful compared to its ancestors who measured more than 60cm. Flickr/Daniel lightscaper, CC BY

The time and date of the origin of insects and their pattern of evolution and survival over millions of years is revealed in a new study, published today in Science magazine.

Insect relationships have always been very difficult to unravel because of the sheer diversity of insect life – one in every two multicellular organisms (animals and plants) on Earth is an insect. Another difficulty was because insects evolved so long ago.

The study, a collaboration of more than 100 scientists from 16 countries as part of the 1000 Insect Transcriptome Evolution project, looked at the evolutionary history of insects.

Not only are insects diverse, they are also of immense economic and medical importance. They affect our daily lives in both positive and negative ways, from pollinating our crops to spreading diseases such as malaria.

But we can only start to understand the enormous species richness and ecological importance of insects with a reliable reconstruction of their relationships.

It’s all in the DNA

The researchers used a DNA sequence dataset of unprecedented scale and new analysis techniques. This allowed them to look deep back in time to when insects evolved from crustaceans (crabs, lobsters and prawns) and emerged onto land between 450 million and 500 million years ago.

The research is the most recent in the emerging field of phylogenomics – the crossover between evolution and genomics. It provides a detailed view of evolution over deep time scales and over large branches of the tree of life.

Researchers sequenced all the genes from more than 140 types – such as moths, flies, wasps and beetles – and used these to calculate the relationships between all the major groups of insects.

DNA used in the search for ancestors of today’s insects such as the Cuckoo wasp (Hedychrum nobile) Oliver Niehuis, Author provided

DNA used in the search for ancestors of today’s insects such as the Cuckoo wasp (Hedychrum nobile) Oliver Niehuis, Author provided

They then compared all the gene sequences from the insects and found all the genes that were common to all species, and were directly comparable.

A major challenge of these analyses is to find the right genes to compare. Evolution tinkers with genes and modifies old genes for new functions, hence many genes are copied, and most organisms have many similar copies of genes in their DNA makeup.

After a strict selection process the researchers found 1,478 directly comparable genes for the analyses – a much larger set than had been available before for this kind of analysis.

The analysis team then integrated fossil evidence with the genetic dataset and models of molecular evolution to estimate when the different groups evolved.

That’s an old bug

The study shows that insects originated at the same time as the earliest terrestrial plants about 500 million years ago. The closest relatives of the first insects were probably similar to silverfish, modern primitive insects that have never evolved wings.

Nothing much has changed in the Silverfish (Lepisma saccharina). Flickr/Stanislav Sedov, CC BY

Nothing much has changed in the Silverfish (Lepisma saccharina).
Flickr/Stanislav Sedov, CC BY

The analyses suggest that insects and plants shaped the earliest terrestrial ecosystems together, with insects developing wings to fly about 400 million years ago.

This was long before any other animal could do so and occurred almost as soon as land plants developed height.

We can only speculate as to why these ancient insects adapted so quickly. Modern insects have large population sizes and extremely plastic, modular anatomy that gives them great advantages in being able to capitalise on new opportunities in the environment.

The closest modern relatives of the first winged insects are dragonflies and mayflies, and large dragonfly relatives with a wingspan of 60-70cm existed not long after insects first developed wings.

Thank goodness these large, swift general predators with slashing mandibles are not around today! Insects (and angels) are the only group of flying animals that have not given up a pair of arms or legs for wings.

Most major groups of insects appeared in a burst of evolution about 350 million years ago such as grasshoppers and cockroaches. Many common groups of insects such as flies, wasps and beetles appeared more than 200 million years ago.

A Snakefly (Dichrostigma flavipes) – note how insects didn’t give up limbs to evolve wings. Dr Oliver Niehuis, ZFMK, Bonn, Author provided

A Snakefly (Dichrostigma flavipes) – note how insects didn’t give up limbs to evolve wings.
Dr Oliver Niehuis, ZFMK, Bonn, Author provided

The study confirms recent evidence that termites are just social cockroaches – cockroaches that have lost their wings, live in large colonies and have developed different body shapes (castes) within the same species for different duties in the nest.

Surviving the mass extinctions

While many other groups, such as dinosaurs, were affected by mass extinction events, insects seem to have sailed on regardless.

Because they have adapted to virtually every terrestrial environment, many insect groups survive extinctions and then diversify by quickly adapting to new situations and opportunities that appear after such biodiversity crises.

In many ways evolution is a numbers game, and the large population sizes of many insects mean that there is a good chance that favourable mutations will arise somewhere, sometime that allow insects to exploit new situations quickly.

We see this today as insects quickly develop methods to detoxify new insecticides and become resistant.

The future of insect survival

The study reinforces the great importance of understanding insect biology for the future of human kind. That insects have been on the planet for almost half a billion years and flourished is simply because they are literally everywhere and adapt quickly to new environments and opportunities.

Insects will likely feed on the last vertebrate carcass on the planet. So we would be wise to prepare for a long and arduous battle each time we compete with insects for resources.

We now have a very detailed and precise view into the genetic constitution of insects. In future it will become possible to comparatively analyse metabolic pathways of different insects and use this information to more specifically target undesirable species.

The study will enable researchers to link the ecological responses of insects to their genetic makeup in new and exciting ways.

Buoyed by the success of this study the research consortium – which includes CSIRO – is now embarking on a huge analysis of more than 2,000 insect genomes.

This will provide a more detailed evolutionary canvas and timescale, and enable the consortium to ask exactly how insects responded to the crises and opportunities that appeared during their long and successful occupation of planet Earth.

The Conversation

David Yeates receives funding from various Australian and International funding agencies, and holds the Schlinger endowed research position at the Australian National insect Collection.

This article was originally published on The Conversation.
Read the original article.

The science of living with fire

Bushfire in tropical Australia

Bushfire in tropical Australia

The bushfire season isn’t wasting any time this year. There are already large fires in South Australia and NSW, and the obligatory ‘the state is a tinderbox’ warnings came out months ago. There were bushfires in July in NSW, and the number of local council areas in southern Australia declaring the fire season open in August – it starts in July up north – has more than doubled.

So a program on SBS on bushfires is timely. Inside the Inferno screens at 8.30pm on 5 November and 12 November. It’s mainly about the everyday heroes who volunteer to fight bushfires. But there’s a fair bit about the science of bushfires, and that’s where we come in. We contributed to the program, but much more importantly, we contribute to helping keep people safe from fires.

You might be surprised at how much of our work has a connection to fires. It’s not all we work on, obviously, but many areas of science go into prediction and management of fire.

Let’s start at prediction. Wenju Cai and his team at the Oceans and Atmosphere Flagship have been working on a better understanding of the El Niño Southern Oscillation and its lesser-known counterpart, the Indian Ocean Dipole (IOD). Their groundbreaking work has established that the IOD preconditions south-eastern Australia for major bushfires, and enabled us to stretch out the prediction range for severe fire activity to between four to six months. What you can predict, you can plan for.

And you need to know exactly what you’re planning for. That’s what the Pyrotron helps us do. It’s a 25 metre long fire-proof wind tunnel, with a working section for conducting experiments and a glass observation area.

It’s used to study – safely, under controlled conditions – how fires ignite in bushfire fuel and how they spread. Obviously, this is necessary work that can’t be done in the field under wildfire conditions. Using the Pyrotron we can study the mechanisms of bushfires’ spread, their thermokinetics – the chemistry of combustion – and fuel consumption, emissions and residues under different burning conditions.

But we won’t ever be able to prevent fires breaking out. We can plan, we can study, but we can’t change the nature of Australia. We can’t stop hot, dry days or lightning strikes. What we can do is find the safest way to live in our combustible climate.

Fire is one of many influences that define our living space. The challenge is to find acceptable ways of living with bushfires while retaining the ability to choose where and how we live. We also need to dispel some of the myths about bushfires that have put people and property in greater danger than was necessary. And we need to understand the risks from bushfires inherent in different types of construction. We need to know what’s safest and strongest, and how to build it.

We’ve surveyed every bushfire involving significant house loss since the 1983 Ash Wednesday fires, and we’ve tested a variety of construction methods to find optimal building types for fire-prone areas. How do we test them? The obvious – only – way. We set fire to them.

It’s not just how resistant they are to collapsing into a pile of ashes that’s important, although obviously that’s a major consideration. We also need to know what kind of house would best enable people to shelter in them while actively defending them from the bushfire attack. To put this all together, we use our expertise in:

  • assessment of bushfire risk at the urban interface
  • integrated urban design solutions including whole-of-life energy and water use, biodiversity, landscapes, cultural value systems, lifestyle expectations, and risk from other sources
  • analysis of major bushfire events
  • development of fire spread prediction models and tools
  • evaluation of fire suppressants and applications
  • post-incident analysis of bushfire impact on houses and people
  • fire characteristics at the urban interface
  • community education
  • performance of materials during bushfire exposure
  • characterisation of materials or systems performance in bushfires
  • product development, verification and enhancement for use in bushfire-prone areas (specialist coatings, glazing protection, timber deck design).
  • fire fighter vehicle burn over protection systems

It’s a lot, but we don’t stop there. We also work on disaster management tools for fires. We developed the Emergency Response Intelligence Capability (ERIC) in collaboration with the Australian Government Department of Human Services Emergency Management team.

This uses information from a range of sources and includes:

  • region data from the Australian Bureau of Statistics
  • context data including demographics and details of the natural and built environment
  • ‘live’ data feeds describing the emergency event as it progresses and the historical record of previous ‘live’ data feeds
  • an archive of previous situation reports

This information can be focused for a specific region under investigation and collated semi-automatically to generate situation reports. The situation reports include information synthesised from available datasets and augmented by user provided content. The situation reports it generates describe what the event is, where it is located and the impact on the local community and to the department.

These days, social media is one of the most important channels when a disaster is unfolding, so we’re working on that too. Every minute, vast amounts of information are communicated via Twitter. Our challenge is to make relevant information accessible to emergency services.

Without suitable tools this information can’t be used. A huge amount of detail about the 2009 Victorian bushfires was reported in real-time on social network sites. The trouble was that state and federal disaster response agencies couldn’t see it.

We’ve created Emergency Situation Awareness (ESA) software to detect unusual behaviour in the Twittersphere and alert users in the emergency services if a disaster is unfolding online.

So that’s our contribution to helping keep people safe from bushfires, and, if worst comes to worst, in them. We hope it helps the firies – they deserve all the help they can get.

Prize-winning scientist works with antimatter, to make substances that are bigger on the inside – and real

Dr Matthew Hill

Dr Matthew Hill

Matthew Hill’s work sounds as though it should be directed by George Lucas. The main difference is that it’s real. But a job where the tools of trade include the Australian Synchrotron AND antimatter still sounds like science fiction.

As do the results that come from it. Matthew has just been awarded the 2014 Malcolm McIntosh Prize for Physical Scientist of the Year (presented as part of the Prime Minister’s Prize for Science awards), for his work on Metal Organic Frameworks (MOFs).

These are networks of metal atoms that are linked and separated by carbon-based compounds. They’re incredibly porous – about ten times more so than any material discovered previously. Their internal storage capacity can be as much as 6000 square metres for a gram of material. That’s a whole football field, stored in a tiny space.

It doesn’t end there. They form as crystals, so their structure can be worked out precisely. And, because they can be made using a broad range of metals and organic compounds, it’s possible to construct a huge number of different structures with different characteristics. This means they can be designed to suit specific applications.

MOFs aren’t just for storing things, although they’re very, very, good for that. About forty per cent of the energy consumed by industry is used to separate things, whether it’s in natural gas production, mineral processing, food production or pollution control.

The first of these is well under way. Matthew and his team have developed a membrane embedded with crystals that efficiently separates natural gas from contaminants, and lasts much longer than traditional membranes. He’s working with gas companies to develop the patented technology that could replace the multistorey processing plants found on gas fields with smaller truck-sized systems.

Patented applications for the food industry are also in the works. And further down the track are carbon dioxide scrubbers; safe compact storage systems for gas and hydrogen; and even crystals that could deliver drugs or fertilisers on demand.

One big aim is for carbon capture and storage. Matthew says, ‘The energy-expensive part of carbon capture is in its release. So we teamed up with Monash and Sydney Universities to make a MOF that soaks up the CO2 part, and changes shape when concentrated sunlight shines on it. It wrings itself out like a sponge, and releases 70 per cent of the CO 2 it has stored.’

So how sci-fi is that? Reducing the amount of energy needed to store things – and thus also reducing the carbon emissions, then finding a way to store the carbon at the other end.

But just to show once again that truth can be stranger than fiction, here’s one of those ‘you couldn’t make it up’ stories. The Malcolm McIntosh Prize is awarded in honour of a former CEO of CSIRO, who sadly died in 2000. Matthew is married to the niece of Dr McIntosh.


Get every new post delivered to your Inbox.

Join 3,958 other followers