The science to being crowned king of the crackers

Flickr/Parlsa.

Image credit: Flickr/Parlsa. Traditionally crackers contain hilarious jokes such as this one: Where do snowmen go to dance? To a snowball!

With the festive season in full swing, many of us will soon find ourselves sitting around a dinner table, tugging on a Christmas cracker then poring over the goodies found within.

Traditionally, cracker etiquette dictates that the person left holding the larger portion is dubbed the cracker king (with flimsy paper crown to prove it).

However, have you ever wondered what ‘cracker strategy’ you should employ to increase your chance of securing the win and looking like one of the Wise Men?

Naturally, our researchers Emma Huang and David Clifford along with their equally-festive colleague from the University of Queensland Kim-Anh le Cao, were wondering the same thing. So they turned to science to find out.

Firstly, they got cracking on identifying three cracking cracker-pulling techniques:

  1. The ‘angle’ strategy: A firm two handed grip, tilting the cracker between 20 and 55 degrees downwards, and applying a steady force with no torque
  2. The ‘passive aggressive’ strategy: a firm two handed grip at no angle, no pulling at all, and letting the other person do the work
  3. The ‘control’ strategy: typical of Christmas parties around the world, where both participants pull at no particular angle, but roughly parallel to the floor

In this festive study, volunteers were randomly paired, employing different strategies multiple times in order to leave us with robust data about the validity of each technique.

Image credit: Flickr/Sanickels. Just this this gentleman, you too could be crowned King of the Crackers.

Image credit: Flickr/Sanickels. Just like this gentleman, you too could be crowned King of the Crackers.

So, what were the results?

If you’re an angler, we’ve got bad news. With just a 40 per cent win rate, this technique isn’t likely to secure your spot as cracker king anytime soon. The traditional ‘control approach’ produced the results closest to random chance, resulting in a win 53 per cent of the time.

For those saying bah-humbug to the passive aggressive approach, you might want to rethink things. With an impressive 92 per cent success rate, it turns out the key to securing the win is to let your partner do all the hard work.

As our researchers describe in their study, the passivity of this approach could have important implications for future Christmas parties. Aside from the obvious reduction in cracker-related injuries, the strategy has another major benefit – it is easy to employ with subtlety, unlike strategies involving an angle, which must surely arouse suspicions in your pulling partner.

While we wish you well on your cracker journey, we’ll leave you with a word of caution – while the ‘do nothing’ approach does have a high success rate, it only works if you’re the only one who knows about it.  If both you and your partner employ the same strategy, the party could stretch on forever, resulting in a burnt dinner and no paper crown for you.

Want more festivity? Read the full study or check out ‘a statistician’s Christmas party’


The eyes have it: Is this our next Australian of the Year?

 

Dr Yogi Kanagasingam

State finalist in the Australian of of Year awards, Dr Yogi Kanagasingam

Meet Yogi Kanagasingam. Yogi works at our Australian e-Health Research Centre and his vision is to change the way eye care is delivered around the world to prevent needless blindness.

A ‘serial inventor’, Yogi has developed a number of low-cost diagnostic technologies that are used to take images of our eyes.  These devices are helping in the early detection of serious conditions, ranging from those that directly threaten sight, through to stroke and Alzheimer’s Disease.

By focusing on affordable, mobile solutions, he is bringing quality eye care to thousands of patients who might otherwise have gone without.

Recognising this passion and dedication, Yogi has been named as a WA finalist in the 2015 Australian of the Year Awards. Here are just some of the sight-saving (and often life-saving) projects he’s working on:

Saving sight in remote communities

Regular eye tests are important. They can be used to pick up many diseases including diabetic retinopathy – one of the leading causes of irreversible blindness in Australian adults.

However due to the remoteness of some Australian communities, it can be very difficult for people to access this type of specialist care.

That’s why we’ve been working with our partners in Western Australia (Gold Fields and Great Southern) and Queensland (Torres Strait Islands) to set up remote eye screening – giving hundreds of people access to eye testing services.

This is possible thanks to technology Yogi has developed called Remote-I.

Using Remote-I, local clinicians are able to conduct routine retinal screenings, often as part of scheduled health clinic visits. The system then sends hi-res retinal images to a city-based specialist ophthalmologist via satellite broadband – allowing them to accurately diagnose and refer patients who need immediate treatment.

A retinal image

Retinal images and electronic patient files are sent to city-based ophthamologists.

 A global vision for eye care

Now Yogi and his team are taking Remote-I to the world. For the past year, they’ve been working with the Zhongshan Ophthalmic Centre in China’s Guangdong Province to introduce the technology throughout a network of ten hospitals.

With a population of over 100 million people in Guangdong, local health professionals are now using the technology to screen up to 1000 patients per week. That’s a lot of eye tests.

As well as giving patients access to specialist care, this project is also providing the research team with valuable data about blood vessel patterns in retinas. This will allow them to design algorithms that could be used to automatically detect particular eye diseases, aiding diagnosis in routine screenings.


Early detection of Alzheimer’s

Using curcumin (a compound in the spice turmeric), Yogi and his team have also developed a spice-infused eye test for Alzheimer’s disease.

Patients ingest the curcumin which binds to beta-amyloid plaques (the sticky proteins that indicate Alzheimer’s) showing up in retinal scans as bright spots which can be counted and measured.

Early results show the amount of plaque in the retina closely mirrors the amount in the brain. If confirmed, this could be the beginnings of an easy, non-invasive test for early detection of Alzheimer’s – maybe up to 20 years before cognitive symptoms appear.

Bright spots showing Alzheimer's plaques in retinal scan

Amyloid plaques, a sign of Alzheimer’s, show up in retinal scan as fluorescent spots as curcumin binds to them

 

We’re proud as punch of Yogi. As well as the groundbreaking work he is doing with us here at CSIRO, he is also giving back to the community in his personal time. Yogi is actively involved with local Rotary Clubs, including Freshwater Bay Rotary in WA where he helps promote regular eye screening for primary school children. This can make a big difference to students, as early detection of vision abnormalities can improve both academic and sports performances.

We wish Yogi all the best this Saturday when the WA Australian of the Year will be announced at Government House. WA’s winner will then join recipients from other States and Territories as finalists for the National Awards, to be announced on Australia Day 2015.

Read more about our eHealth research on our website.


Mission accomplished: lost bushwalker saved by flying robots

Outback_Joe_mannequinpicture-108

At long last, Outback Joe has been found.

By Emily Lehmann

Flying robot enthusiasts can breathe a deep sigh of relief, because Outback Joe has finally been saved after spending eight years lost in the bush.

This week, sixteen teams from around the world competed in the search and rescue mission to save our beloved Akubra-clad mannequin pal, who has year after year, been strategically placed in the Queensland outback as part of the Unmanned Aerial Vehicle (UAV) Challenge.

After eight years running, this was the first time that a team – not just one, but four– successfully delivered the emergency package to save Outback Joe, with the top team taking home a grand prize of $50 000.

Each team was tasked with developing their own custom-made UAV (a.k.a flying robot or drone) and navigating it through a course to first locate Outback Joe, and then secondly deliver him a life-saving bottle of water.

The competition brings some of the latest international aerial robotics technology and puts it to the test to highlight its value for use in search and rescue efforts.

These flying machines can cruise at various speeds – some are just like helicopters – and can mostly fly for 40 to 60 minutes at a time. They rely on modern computers and sensors, such as GPS, to figure out where they need to go in order to perform tasks that the operator has asked it to do.

The clever minds behind the winning ‘bot are from CanberraUAV and managed to score the most points out those that completed the challenge – two other Australian teams and one from the United States.

The winning CanberraUAV  team

The winning CanberraUAV team

The UAV Challenge also involves a delivery challenge for high school teams, taking place earlier in the week. Students build their flying robots from scratch, designing and developing the software and hardware needed for their own rescue mission for Outback Joe.

This year’s winner was the all-girl DareDivas team from Mueller College at Redcliffe with a $5 000 prize.

We run the UAV Challenge annually in partnership with the Queensland University of Technology.

One of the UAVs at the challenge (MelAvio)

One of the UAVs at the challenge (MelAvio)


Bees backpacking in Brazil

Bee with a backpack...of the sensor variety.

Bee with a backpack…of the sensor variety.

By Emma Pyers

How do bees in the Amazon jungle compare to those in Tasmania? They get up earlier, for a start.

Paulo de Souza and his team have been tracking bees in the two regions using tiny backpack sensors as part of our Swarm Sensing Project to gather biological and ecological data to improve honey bee health.

The tiny backpacks are just a quarter of a centimetre square and are fitted to the back of the bees.

“We have already attached the micro-sensors to the backs of thousands of bees in Tasmania and the Amazon and we’re using the same surveillance technologies to monitor what each bee is doing, giving us a new view on bees and how they interact with their environment,” Paulo said.

Graph: Daily distribution of bees in Brazil and Tasmania

Daily distribution of bees in Brazil and Tasmania (click for large version)

“Once we have captured this information, we’ll be able to model it. This will help us understand how to manage our landscapes in order to benefit insects like bees, as they play such a key role in our lives. For example, one third of the food we eat relies on bees for pollination, that’s a pretty generous free service these humble insects provide us!”

Early modelling has shown one notable difference between the bees in Tasmania and those in the Amazon; Amazon bees are up and about very early in the morning while Tassie bees prefer to wait until the day warms up before they leave the hive.

But finding out what time bees get out of bed is only a tiny part of what the research can show us. For example the research will also look at the impacts of agricultural pesticides on honey bees by monitoring insects that feed at sites with trace amounts of commonly used chemicals.


A global buzz in micro sensing

We’re working with the Vale Institute of Technology in Rio de Janeiro, Brazil, on micro-sensory technology and systems (read  more about what Vale is up to here).

Working with researchers across the globe has its unique challenges as well as its rewards, and it’s the physical challenges that have been the most interesting.

“As the Africanised honey bees were very aggressive, the hive was placed in an isolated area away from housing and domestic animals – and isolation meant working in densely vegetated areas,” Paulo explained.  “We had to clear a path to the hive and we wore fully protective bee clothing which was tough given the extreme humidity and heat.”

The Brazilian media got a taste of what it was like to work in these conditions, when they suited up to interview Paulo and our colleagues from the Vale Institute of Technology about their work

Pressure from the press

Pressure from the press

The collapse in global populations

Bee health is important globally however, honey bee populations around the world are in danger.

Colony Collapse Disorder (CCD) – a phenomenon in which worker bees from a colony abruptly disappear – and Varroa mite are two major problems facing bee populations globally. While these two problems haven’t appeared in Australia, there is a very real risk.  And what happens if it does? Catastrophe!

Check out this video where Peter Norris, Tasmanian beekeeper, describes his first hand experience with CCD while working in the United Kingdom.

So it’s a good thing our scientists, and their colleagues in Tassie and Brazil, are on the case.

To learn more about how we’re trying to save honey bees around the world tune into ABC Catalyst at 8pm tonight.

CSIRO’s Swarm Sensing Project is a partnership with the University of Tasmania and receives funding from Vale, a Global mining company.


Historic collections could be lost to ‘digital dinosaurs’

An image of Australian shearers taken on glass plate negative is now preserved in a digital collection. Powerhouse Museum Collection/Flickr

An image of Australian shearers taken on glass plate negative is now preserved in a digital collection. Powerhouse Museum Collection/Flickr

By Michael Brünig, CSIRO

Australian’s museums, galleries and other cultural institutions must adopt more of a digital strategy with their collections if they are to remain relevant with audiences.

Only about a quarter of the collections held by the sector have been digitised so far and a study out today says more needs to be done to protect and preserve the material, and make it available to people online.

Challenges and Opportunities for Australia’s Galleries, Libraries, Archives and Museums is a joint study by CSIRO and the Smart Services CRC.

It notes that Australia’s galleries, libraries, archives and museums (the GLAM sector) represent our accumulated achievements and experiences, inspire creativity and provide a place for us to connect with our heritage.

They are also crucial to our economy with the GLAM sector estimated to have a revenue of about A$2.5 billion each year. That’s not only a lot of paintings and artifacts, but a lot of jobs as well.

But despite its size and scope, we found that digital innovation in the sector has been inconsistent and isolated. If these cultural institutions don’t increase their use of digital technologies and services, they risk losing their relevance.

So what changes do they need to make in order to thrive in the digital economy?

Opening doors and minds

With Australia’s rapid uptake of online and mobile platforms, people are now choosing to access and share information in very different ways.

It’s safe to say that the only constant in this space is change. Research suggests that expectations for more personalised, better and faster services and more well-designed experiences will continue to increase.

Virtual tours are now possible at the National Museum of Australia.

Virtual tours are now possible at the National Museum of Australia.

This is why our cultural institutions need to review the kind of visitor experience they are providing. We found only a few organisations had made fundamental changes to their operations that would allow them to place digital services at their core, rather than as an add-on activity.

This is in contrast to the dramatic changes we’ve seen when it comes to adopting digital technologies in our daily lives.

In order to be successful, digital experiences need to be an integrated and cohesive part of an institution’s offering.

Take what is happening at the National Museum of Australia. It’s now possible to take a tour of the museum via a telepresence-enabled robot.

This means school students – particularly those in rural and regional Australia – can explore exhibits virtually, without even leaving the classroom. Interestingly, we hear that this actually increases their desire to visit the museum in person.

Digital-savvy innovations such as this need to be at the fore of our institutions’ thinking if they want to engage with the community and break down barriers to participation.

Engaging with the public

To be successful in this new era, institutions need to meet people on their own (digital) terms. We can no longer expect visitors to queue at the turnstiles waiting for opening time. Organisations need to bring experiences to the user so that they can access them wherever and however they prefer.

Some of Australia’s cultural institutions are starting to get this.

Another image available freely online as part of the Powerhouse Museum Collection. Powerhouse Museum/Flickr

Another image available freely online as part of the Powerhouse Museum Collection. Powerhouse Museum/Flickr

The NSW State Library has appointed a Wikipedian-In-Residence to contribute expertise and train the public in publishing information online.

The National Library of Australia has attracted a large online user base with its online Trove service attracting almost 70,000 unique users each day.

The Powerhouse Museum has made parts of their photographic collections available on Flickr via Creative Commons licensing. This has caused a surge in the level of use and allowed the public to contribute information, adding value to the collection.

While these examples provide a lot of hope for the sector, the unfortunate reality is that they are few and far between. Most of Australia’s cultural institutions have not kept pace with this change and are missing the opportunity to better connect and actually increase their revenue.

Digitise this!

Australia’s eight national, state and territory art organisations hold archives that, if laid out flat end-to-end, would span 629km. This is on top of a staggering 100,000 million artworks, books and audio-visual items in Australia.

But only a quarter of these items are digitised, with some of Australia’s collections still being managed through “old school” mechanisms such as log books and card indices.

Imagine if there was a fire at one of our great institutions? We would risk losing cultural and heritage material of significance. Parts of our history could be completely lost. Even without such a devastating event, if we don’t make our collections more accessible, in a sense they’ll be lost to many of us anyway.

As a country, not only do we need to get moving when it comes to digitising our collections, we also need to explore new and innovative ways to do this. Traditionally, digitisation has meant scanning flat documents, photographing objects or creating electronic versions of catalogue data.

But what if we could do so much more? Researchers are now focused on the next challenge: digitising objects and spaces in three dimensions.

Researchers from the University of Wollongong with support from the Smart Services CRC are focusing on capturing 3D models and the textures of surfaces using low-cost equipment such as a Kinect camera from an Xbox.

3D map of The Shrine of Remembrance, Melbourne

3D map of The Shrine of Remembrance, Melbourne

At CSIRO, we’ve even used our own handheld scanner Zebedee to map culturally and environmentally significant sites suchb as the Jenolan Caves, Melbourne’s Shrine of Remembrance and even a semi-submerged wreckage of the HMQS Gayundah.

We’re also creating high-quality 2D and 3D image libraries based on the National Biological Collections, letting us document biodiversity in the digital era.

Embracing the digital economy

While our study reveals that Australia’s cultural institutions are certainly at risk of becoming “digital dinosaurs”, it also demonstrated how those organisations that are embracing digital are reaping the benefits.

It provides recommendations for the GLAM industry in order for it to maximise its digital potential, including:

  • shifting to open access models and greater collaboration with the public
  • exploring new approaches to copyright management that stimulate creativity and support creators
  • building on aggregation initiatives such as the Atlas of Living Australia
  • standardising preservation of “born digital” material to avoid losing access to digital heritage
  • exploiting the potential of Australia’s Academic and Research Network (AARNet) and the National Broadband Network (NBN) for collection and collaboration.

By adopting these recommendations and building on some innovative examples in the sector, Australia’s GLAM industry will be well placed to embrace digital, rather than be engulfed by it.

This article was originally published on The Conversation.
Read the original article 


Our 3D thermal scanner is so hot right now

By Emily Lehmann

If you’re feeling a bit under the weather, you might bring your hand to your forehead and take note of your temperature. Just like your mama used to do.

Running a high temperature is an age-old giveaway that you’re sick with a fever and that you better check in with your doc or stay at home in your PJs.

Like your body heat is a sign of a fever, deep down at a cellular level, it can also be an indicator of other serious illnesses and diseases. Cancer is one example because cancer cells are typically higher in temperature than healthy cells.

We’ve come up with a hot new thermal mapping and 3D imaging technology called HeatWave that could one day be used by health professionals to detect and monitor certain cancers.

HeatWave could be usef for early detection and monitoring of injury and disease.

HeatWave could be used for early detection and monitoring of injury and disease.

A key advantage of thermal scanning is that it’s radiation-free, reducing risks to patients imposed by other forms of tomography and repeat scans can be undertaken after shorter periods of time.

While there are other thermal scanning technologies out there being used by health professionals, unlike HeatWave, they are only capable of producing 2D images.

This means that repeat images need to be taken at exactly the same angle to achieve an accurate picture of changes to the area of the body. They are also difficult and require years of practice and expertise – something which HeatWave overcomes.

The HeatWave device

The HeatWave device

Early cancer detection is just one of the many great applications envisaged for the technology and we’ve just won an award for it.

HeatWave took home the national research and development award at the iAwards on Friday night, recognised as a cutting edge innovation.

The handheld mobile technology can generate precise 3D models of objects or scenes, overlaid with accurate temperature information in real time.

Consisting of a 3D camera and thermal sensors, HeatWave can be literally waved around objects and spaces to collect data. This data is then turned into high-resolution 3D images.

Thermal imaging is growing rapidly and HeatWave is expected to have a range of applications in industries including energy, construction, manufacturing, agriculture and emergency services.

Media enquiries:  Emily Lehmann on +61 3 9545 8746 or emily.lehmann@csiro.au

Industry enquiries: Dr Peyman Moghadam on +61 7 3253 3621 or peyman.moghadam@csiro.au


Will robots ResQu our rainforests from weeds?

By Carrie Bengston

Want to go for a walk in a rainforest? Join us!

We push our way past vines tangled around tree limbs in the dark, multilayered forest.  As we walk, we’re aware that we’re the only people in this tranquil environment. But it’s a place that’s home to rare and unique birds like the cassowary, a fantastic collection of fungi, and unusual mammals like the tree kangaroo. We step across clear, freshwater creeks (plus or minus leeches) and we listen to leaves rustle in the canopy as a thunderstorm approaches, rumbling in the distance.

Our rainforests are precious and incredibly biodiverse. For example, the rainforests of Far North Queensland, which include the iconic Daintree, occupy less than 0.2 per cent of Australia’s land mass. Yet they support more than ten percent of its flora, 36 per cent of its mammals and 48 per cent of its birds. Rainforests are confined to small patches clustered mostly in inaccessible, mountainous regions along the tropical coast. It’s important we look after these amazing habitats. Unfortunately, a purple-leafed weed, Miconia calvescens, has escaped from its natural habitat overseas via introduction into Aussie gardens and nurseries (which has since been banned) and has made its way into our World Heritage rainforests.

Miconia calvescens

The miconia calvescens, image: Forest & Kim Starr

Purple is a great colour. Don’t get us wrong. But these purple weeds have no place in our rainforests as they compete viciously for space, and squeeze out our native plants. The Miconia menace is taking over the rainforests of Tahiti and other countries. We don’t want that happening here. So we’ve called on an unlikely ally to stop Miconia getting a roothold – robotic technology.

We’ve been participating in a research project, Project ResQu, to trial robot helicopters that could do some of the weed spotting people currently do. Weed spotters work on the ground pushing through dense forest or flying above in manned helicopters, but robots can do the job better and safer. We recently put that to the test.

UAV in flight

UAV in flight. Image: Stefan Hrabar

The robots did well. The robot helicopters, fitted with radar and special cameras and given quirky names like ‘Hotel Golf’, found several Miconia infestations missed by other methods of surveillance. Here’s how we did it.

Will robots save the rainforest? They just might.

About Project ResQu:

Project ResQu is a two-year, $7M project led by the Australian Research Centre for Aerospace Automation (ARCAA) in a collaborative project between the Queensland University of Technology (QUT), CSIRO, Boeing and Insitu Pacific with the support of the Queensland State Government Department of Science, Information Technology, Innovation and the Arts.

Media contact: Emma Pyers, 03 5227 5123, 0409 031 658, emma.pyers@csiro.au


Follow

Get every new post delivered to your Inbox.

Join 4,245 other followers