Going with the throughflow

Hose spraying water

The backyard experiment any hose-owner can try. Image: Flickr / Scott Akerman

By Simon Torok

Here’s a simple backyard science experiment for you to try, which has global implications.

Grab a garden hose, turn it on, and then put your thumb over the end of it. The flow of water thins, while its power intensifies.

Okay, now multiply that by a few million and you have some idea of the impact of recent La Niña conditions on a major ocean current north of Australia.

The Indonesian Throughflow is a series of ocean currents linking the Pacific and Indian Oceans. It carries water from the Pacific to the Indian Ocean through the passages and straits of the Indonesian Archipelago.

Schematic of the ITF. Values of the flow and the major passages are indicated by red. Water enters the ITF from the western Pacific and exits into the Indian Ocean.

Schematic of the ITF. Values of the flow and the major passages are indicated by red. Water enters the ITF from the western Pacific and exits into the Indian Ocean. Image: Wikipedia.

Researchers – led by Janet Sprintall at Scripps Institution of Oceanography in the United States, and including Susan Wijffels from CSIRO in Hobart – have found that the flow of water in the Indonesian Throughflow has become more shallow and intense since the late 2000s due to La Niña conditions, just as the water flow thinned and intensified while you played with that garden hose.

The paper, The Indonesian seas and their role in the coupled ocean-climate system appears in today’s online publication of the journal Nature Geoscience.

The Indonesian Throughflow is the only place in the world where warm equatorial waters flow from one ocean to another; consequently, the throughflow is an important chokepoint in the flow of heat in the climate system.

The paper suggests that human-caused climate change could make this shallowing and intensification a more dominant feature of the Indonesian Throughflow, even under El Niño conditions.

Changes in how much warm water is carried by the Indonesian Throughflow will affect the sea surface temperature, and in turn the patterns of rainfall in our region.

So you may need to think a bit more about how you use that garden hose.


Young guns – our up and coming

Saad SayeefSaad Sayeef – Research Scientist – Energy

When clouds block the sun, solar panels and the electricity networks they are hooked up to need time to adjust to the fluctuations. Saad is working out how to maximise solar efficiency as part of the Energy Networks Team in the CSIRO Energy Flagship. He is looking at various solutions including smart grids, solar energy management and solar “forecasting”.

Beau_Leese

Beau Leese – General Manager – Strategy, Performance and Flagships 

Beau is responsible for the development and implementation of the CSIRO’s overall enterprise strategy, new strategic initiatives, science portfolio investment, planning and performance management, Impact 2020 and cross Flagship collaboration (phew). Beau led CSIRO’s operating model review and the startup phase of the integrated reform program. He is a member of CSIRO’s Executive Management Council, SICOM and Major Transactions Committee.

 

Lisa portraitLisa Harvey-Smith: Research Astronomer – Information Sciences

Lisa is CSIRO’s Project Scientist for the Australian Square Kilometre Array Pathfinder in WA.
The daughter of a Primary School teacher and a house-dad, Lisa left school at the age of 11 and taught herself at home, where her passion for astronomy developed. Her scientific publications span a number of fields from star formation, cosmic magnetic fields and gravitational lensing to supernova remnants. When not designing telescopes and studying galaxies billions of light-years away, she enjoys ultra-long-distance running, including 12 and 24-hour races. In 2012 she was appointed chair of the steering committee of the Women in Astronomy Chapter of the Astronomical Society of Australia.

Nick RodenNick Roden – PhD Student – Environment

Rather than chipping on to the 9th green on the professional golf circuit, Nick Roden is now looking at how different biological and physical processes combine to influence the carbon cycle in the waters around East Antarctica. A few years ago Nick, who is based in Hobart, decided that studying the biology of the waters around East Antarctica as part of a PhD had a brighter future than being a professional golfer, so Nick chucked in the clubs and joined CSIRO. We’re glad he did.

 

Vanessa (Ginny) Hill – Social Media Advisor – Communications

Vanessa Hill + Luna Vanessa is one of the team leading CSIRO into the digital age as far as social media is concerned –video content produced by Vanessa has had more than 13 million views on YouTube. Other platforms such as Twitter and news@CSIRO blog take CSIRO’s and Vanessa’s work to millions more each year.
Even when Vanessa is at home or on holidays – she keeps on tweeting and communicating science.

 

 


Saving daylight

Bird on branch

Don’t be a confused cuckoo. Turn back your clocks this weekend. Image: Flickr / Sean MCann

This coming Sunday when the clocks are wound back one hour, the curtains will stop fading faster, birds and cows will no longer be confused by the ‘extra’ sunshine and life will return to its natural rhythm.

For those living in South Australia, NSW, Tasmania, Victoria and the ACT, Daylight Saving comes to an end this week.

Daylight Saving has caused much debate since it was first conceived by Benjamin Franklin in 1784.

Not that “adjusting” time to suit our needs was new then.  Ancient civilizations adjusted daily schedules to the sun – often dividing daylight into 12 hours regardless of day length, so that each daylight hour was longer during summer.

Roman water clocks had different scales for different months of the year. In Rome the third hour after sunrise started just after 9am and lasted 44 minutes at the winter solstice, but at the summer solstice it started just before 7am and lasted 75 minutes.

George Vernon Hudson

The granddaddy of Daylight Saving, Mr George Vernon Hudson

Modern Daylight Saving never really got off the ground until 1895 when an entomologist from New Zealand, George Vernon Hudson, wrote a paper that proposed a two-hour shift forward in October and a two-hour shift back in March. He followed up his proposal with an article in 1898, and although there was interest in the idea, it was never followed through.

Some places in Argentina, Iceland, Russia, Uzbekistan and Belarus have introduced permanent Daylight Saving and the United Kingdom stayed on it from 1968 to 1971.

There are also apparently some health issues related to Daylight Saving.

People who are already vulnerable to heart disease may be at greater risk right after sudden time changes.

Recently a study was released in the US which showed that people who were already vulnerable to heart disease may be at greater risk right after sudden time changes.

According to the study, turning clocks forward an hour for Daylight Saving time was followed by a spike in heart attacks on the Monday following. Monday is traditionally the day when most heart attacks occur  – it is suggested that the stress of returning to work may be a cause. There was a 25 per cent jump in the number of heart attacks occurring the Monday after the spring time change – or a total of eight additional heart attacks. But when clocks fall back and people gain an hour of sleep, there was a drop (21 per cent) in heart attacks on the Tuesday.

So, it seems the odds are increased that I will live a bit longer – at least until Daylight Saving comes back.

While it seems that every article about Daylight Saving has to have the curtain fading gag, is there ‘extra’ sunshine?

In the 1950s scientists in our Division of Physics were using a flare-patrol telescope to observe disturbances in the Sun’s chromosphere. It showed the appearance and growth of several flares and surges. Some of these disturbances are observed against the disk of the Sun. Those too faint for this are studied at the limb, or edge, of the Sun.

Aurora over the frozen forests of Sweden

Aurora over the frozen forests of Sweden. Image: RainbowJoe

Coronal mass ejections on the Sun release huge amounts of matter and electromagnetic radiation which can cause particularly strong aurorae (Northern and Southern Lights), disrupt radio transmissions and cause damage to satellites and electrical transmission line facilities.

Coronal mass ejections reach velocities between 20km/s to 3200km/s with an average speed of 489km/s. They take between one and five days to reach Earth.

So is that extra sunshine?


State of the Climate 2014? It’s warmer.

State of the Climate 2014 report cover

Every two years CSIRO and the Bureau of Meteorology get together, crunch the numbers and release a definitive report on long term trends in Australia’s climate – The State of the Climate.

The SoC 2014 released today is focused on the changes that have been observed in Australia’s long-term climate trends and it shows that temperatures across Australia were, on average, almost 1°C warmer than they were a century ago, with most of the warming having occurred since 1950.

“Australia’s mean temperature has warmed by 0.9°C since 1910,” BoM chief Dr Vertessy said. “Seven of the ten warmest years on record in Australia have occurred since 1998. When we compare the past 15 years to the period 1951 to 1980, we find that the frequency of very warm months has increased five-fold and the frequency of very cool months has decreased by around a third.

“The duration, frequency and intensity of heatwaves have increased across large parts of Australia since 1950. Extreme fire weather risk has increased, and the fire season has lengthened across large parts of Australia since the 1970s.

“We have also seen a general trend of declining autumn and winter rainfall, particularly in southwestern and southeastern Australia, while heavy rainfall events are projected to increase. Australian average annual rainfall has increased slightly, largely due to increases in spring and summer rainfall, most markedly in northwestern Australia.”

History of data collection

State of the Climate 2014 draws on an extensive record of observations and analysis from CSIRO, the Bureau of Meteorology, and other sources.

CSIRO boss Megan Clark said Australia has warmed in every State and Territory and in every season.

“Australia has one of the most variable climates in the world. Against this backdrop, across the decades, we’re continuing to see increasing temperatures, warmer oceans, changes to when and where rain falls and higher sea levels,” Dr Clark said. “The sea-surface temperatures have warmed by 0.9°C since 1900 and greenhouse gas concentrations continue to rise.”

CSIRO and the Bureau of Meteorology play a key role in monitoring, measuring and reporting on weather and climate, contributing to improved understanding of our changing global climate system. State of the Climate 2014 is the third report in a series and follows earlier reports in 2010 and 2012.

Indicators of a world experiencing a consistent pattern of warming.

Indicators of a world experiencing a consistent pattern of warming.

Below are some of the main facts from the report.

Temperature

  • Australia’s mean surface air temperature has warmed by 0.9°C since 1910.
  • Seven of the ten warmest years on record have occurred since 1998.
  • Over the past 15 years, the frequency of very warm months has increased five-fold and the frequency of very cool months has declined by around a third, compared to 1951–1980.
  • Sea-surface temperatures in the Australian region have warmed by 0.9°C since 1900.

Rainfall

  • Rainfall averaged across Australia has slightly increased since 1900, with a large increase in northwest Australia since 1970.
  • A declining trend in winter rainfall persists in southwest Australia.
  • Autumn and early winter rainfall has mostly been below average in the southeast since 1990.

Heatwaves and fire weather

  • The duration, frequency and intensity of heatwaves have increased across large parts of Australia since 1950.
  • There has been an increase in extreme fire weather, and a longer fire season, across large parts of Australia since the 1970s.

Global atmosphere and cryosphere

  • A wide range of observations show that the global climate system continues to warm.
  • It is extremely likely that the dominant cause of recent warming is human-induced greenhouse gas emissions and not natural climate variability.
  • Ice-mass loss from the Antarctic and Greenland ice sheets has accelerated over the past two decades.
  • Arctic summer minimum sea ice extent has declined by between 9.4 and 13.6 per cent per decade since 1979, a rate that is likely unprecedented in at least the past 1,450 years.
  • Antarctic sea-ice extent has slightly increased by between 1.2 per cent and 1.8 per cent per decade since 1979.

Oceans

  • The Earth is gaining heat, most of which is going into the oceans.
  • Global mean sea level increased throughout the 20th century and in 2012 was 225 mm higher than in 1880.
  • Rates of sea-level rise vary around the Australian region, with higher sea-level rise observed in the north and rates similar to the global average observed in the south and east.
  • Ocean acidity levels have increased since the 1800s due to increased CO2 absorption from the atmosphere.

Greenhouse gases

  • Atmospheric greenhouse gas concentrations continue to increase due to emissions from human activities, with global mean CO2 levels reaching 395 ppm in 2013.
  • Global CO2 emissions from the use of fossil fuel increased in 2013 by 2.1 per cent compared to 3.1 per cent per year since 2000.
  • The increase in atmospheric CO2 concentrations from 2011 to 2013 is the largest two-year increase ever observed.

Future climate scenarios for Australia

  • Australian temperatures are projected to continue to increase, with more hot days and fewer cool days.
  • A further increase in the number of extreme fire-weather days is expected in southern and eastern Australia, with a longer fire season in these regions.
  • Average rainfall in southern Australia is projected to decrease, with a likely increase in drought frequency and severity.
  • The frequency and intensity of extreme daily rainfall is projected to increase.
  • Tropical cyclones are projected to decrease in number but increase in intensity.
  • Projected sea-level rise will increase the frequency of extreme sea-level events.

Download the full report on our website. Follow the conversation on Twitter with #SoCAus

***

Media: Huw Morgan  M: +61 417 834 547


Requiescat in pace – FFT

Nearly three years after Friday Fish Time was spawned, the time has come to kill it off. FFT served us well, but now the blog has caught on (and everyone wants to get on board) there is little room left for little fish tales. Time to cast them off, throw them back, reject the best, and recast. So, goodbye my scaly friends.

Nearly three years after Friday Fish Time was spawned, the time has come to kill it off.
FFT served us well, but now the blog has caught on (and everyone wants to get on board) there is little room left for little fish tales. Time to cast them off, throw them back, reject the best, and recast.
So, goodbye my scaly friends.


Friday Fish Time

Common name: Blue Marlin. Scientific name: Makaira nigricans. Family: Istiophoridae.

Common name: Blue Marlin. Scientific name: Makaira nigricans.
Family: Istiophoridae.

Blue Marlin: This week a blue marlin washed up on a suburban Adelaide beach. It is thought this is the first time a marlin has been found in the cool waters of Gulf St Vincent where Adelaide sits.

Scientists from the South Australian Research and Development Institute think the fish took a wrong turn at Kangaroo Island and ended up in the Gulf.

They also think that the 3.2m long, 250kg marlin swan along the WA and SA coasts in the warm Leeuwin Current which at this time of year flows down the WA coast and around into the Great Australian Bight.

Below is a picture of the current (red turning to yellow and green as it cools) whipping around the bottom of WA. The second image shows the SA coast with the relatively warm water flowing around Kangaroo Island.

More images of the ocean currents around Australia can be found at the Bureau of Meteorology site which gets the information through the Bluelink program  run by CSIRO’s Wealth from Oceans Flagship in collaboration with the Bureau of Meteorology and the Royal Australian Navy.

Current

current2

Anyway, back to the blue marlin. There is a debate going on about the classification of the Atlantic blue marlin and the

Indo-Pacific blue marlin (Makaira mazara) as separate species. Genetic data seems to show that although the two groups are isolated from each other they are both the same.

The blue marlin spends most of its life in the open sea far from land and preys on a wide variety of marine life and often uses its long bill to stun or injure its prey.

Females can grow up to four times the weight of males and the maximum published weight is 818kg and 5m long.

Blue marlin, like other billfish can rapidly change color, an effect created by pigment-containing iridophores and light-reflecting skin cells. Mostly they have a blue-black body on top with a silvery white underside.

Females can spawn up to four times in one season and release over seven million eggs at once. Males may live for 18 years, and females up to 27.

National Parks and Wildlife officer Josh Edwards and PIRSA aquatic health officer Dr Shane Roberts help to transport the blue marlin found on Carrickalinga beach. Pic: SARDI

National Parks and Wildlife officer Josh Edwards and PIRSA aquatic health officer Dr Shane Roberts help to transport the blue marlin found on Carrickalinga beach this week.
Pic: SARDI


Friday Fish Time

Common name: Dark Smiling Whiptail. Scientific name: Ventrifossa sazonovi. Family: Macrouridae.

Common name: Dark Smiling Whiptail. Scientific name: Ventrifossa sazonovi. Family: Macrouridae.

Dark Smiling Whiptail: I was trying to be smart and find a fish with some sort of connection to the Winter Solstice (today) to try and make the shortest day of the year bearable. So I started to search the ScienceImage database using words like solstice, daylight, night etc etc and came across the Dark Smiling Whiptail.

I have got to tell you there is very little of interest about this fish. It lives down to about 850m of water which is something, but apart from that, not much.

Then I started to have a look at the scientists who described the fish and named it in 1999 – T. Iwamoto & A. Williams. As it turned out Dr Tomio Iwamoto has been the Curator of Ichthyology for 37 years at the California Academy of Sciences.

Then I found a connection to CSIRO. Dr Iwamoto is named as one a number of scientists who have made a major contribution to the fishmap interactive database which is a part of the Atlas of Living Australia. Dr Iwamoto has done a lot of work in Australian waters and contributed an enormous amount of information and experience to marine science.

There is always something interesting about everything.

So, hopefully this has helped get you through the day. For those in the Southern Hemisphere, from now on things are looking brighter!


Friday Fish Time

Common name: Mackerel Icefish. Scientific name: Champsocephalus gunnari. Family: Channichthyidae.

Common name: Mackerel Icefish. Scientific name: Champsocephalus gunnari. Family: Channichthyidae.

Mackerel Icefish: Right. It is starting to get a bit cold around the countryside so I thought this may be of interest.

It is a fish found only in the Southern Ocean and are mainly Heard and McDonald Islands, and islands in the south Atlantic such as South Georgia.

They are found in depths up to 700m with older juveniles and adults forming large schools at or near the sea bottom or mid-water range of the water column, feeding on krill and small fish.

They grow quite quickly and mature at a length of  between 22cm to 26cm after about three or four years. They grown to about 35cm.

Apparently the flesh is white and firm like the King George Whiting but with a higher oil content. They are good for grilling, baking or steaming.


Friday Fish Time

Common name: Moon Jellyfish. Scientific name: Aurelia aurita. Family: Ulmaridae.

Common name: Moon Jellyfish. Scientific name: Aurelia aurita. Family: Ulmaridae.

Moon Jellyfish: It is rare for these to live more than six months in the wild but they are really interesting.

All species in the genus are closely related and is hard to pick them apart except by genetic sampling.

They grow to about 25–40cm in diameter and can be recognized by its four horseshoe-shaped gonads, easily seen through the top.

It is not really a strong swimmer and it mainly drifts with the current feeding on plankton, fish eggs, small organisms and molluscs. It captures food with its tentacles and scoops it into its body for digestion.

Moon Jellyfish are found throughout most of the world’s oceans, from the tropics to as far north as latitude 70°N (runs through the middle of the US and Spain) and as far south as 40°S (runs through Tasmania).

It has also been found in waters as cool as 6C to as warm as 31C.

They do not have any respiratory parts such as gills, lungs, or trachea so it respires by diffusing oxygen from water through the thin membrane covering its body.


Friday Fish Time

Shaw's Cowfish

Shaw’s Cowfish

The photo above was sent in by a friend of a friend who came across the dead fish at Goolwa in South Australia this week and was unsure what it was.

I sent it to Alastair Graham who is the Fish Collection Manager at the Australian National Fish Collection in Hobart. As expected Alastair was a font of fishy knowledge.

“The photo does not show all the diagnostic characters, however I would say that it is most probably a Shaw’s Cowfish (Aracana aurita).  They are normally found on coastal rocky reefs and seagrass areas at 10-160 metres.  Not being strong swimmers, they are often found washed-up after storms.”

I had to laugh when Alastair said it was was not a good swimmer – seems pretty important to a fish…

Anyway, they are found around southern coastal waters of Australia from central New South Wales to south west Western Australia.


More than 85 years of growth, change and impact

By Dr Megan Clark, CSIRO Chief Executive

Some of you may have seen a series of articles in the local media covering a range of topics in relation to CSIRO.  I would like to share with you the opinion piece, below, in response.

For 87 years, CSIRO science has been supporting Australia’s national growth. CSIRO has not done that by standing still, and over a decade ago a radical transformation of the way we deliver our science was undertaken.

To remain relevant to the nation and to answer the complex questions for society, we needed the courage to transform. For example it is no longer enough for farmers merely to have the best crop varieties.  For the next level of productivity they need the best farming systems, the best sensors, the best water efficiency and soil knowledge.  They need all of these answers delivered in a connected way.

Dr Megan Clark

Dr Megan Clark

CSIRO provides these answers through its flagship program, multidisciplinary challenge-focussed groups that bring together the best minds and research.  Was this the right decision? Yes it was, and others around the world agree with us: the Grand Challenges program in Canada and the INRA metaprogrammes in France are just two examples of similar responses. But to maintain the solutions focus requires a balance with science excellence.

We hold ourselves accountable to those who are passionately committed to quality science, our former employees, our clients and the Australian public and I agree with those who demand science excellence.  How do we do this? We subject our experiments, our papers, our fields of research, our output and our operations to rigorous scrutiny.

Each flagship and research division brings in a team of international experts every three to four years. The experts examine many dimensions of our work, make recommendations and when we receive criticism we act.

We respond by increasing investment in some areas of science, building on areas and exiting from others, making decisions that balance our budget constraints with our science goals. If a review shows we are not performing in a science area, we build, we exit or we transform that area.  There is no standing still in CSIRO.

For example, in 2009 the Earth Sciences and Resource Engineering review decried the publication rate. In only three years this rate has doubled. CSIRO’s geoscience standing has for the first time entered into the ranks of the top 0.1 per cent of global institutions. And this has been achieved at a time when technology from this division is helping the mining industry in 19 of the 31 Australian long wall mines, for both productivity and safety gains.

As some have feared, the CSIRO transformation has not curtailed our science.  Here are some of the facts: Our ranking is in the top ten of all institutions in the world for three scientific fields: environment/ecology, agricultural science, and plant and animal science.  This is equal with the standing of research heavyweights such as Oxford and Yale Universities, an extraordinary achievement for an Australian institution.

In 2012 we had record engagement with industry, record licenses of our IP and a record publication rate. Our mandate as an applied science organisation goes beyond research. CSIRO is Australia’s largest patent holder with 3582 live patents, 728 inventions, 275 trademarks and 83 plant breeder rights. We have particular strengths in measurement, biotechnology, materials (metallurgy) and computer technology, winning the prestigious European Inventor Award from the European Patent Office last year for the CSIRO team that invented fast wireless LAN.

CSIRO partners with 38 of the 40 universities in Australia and has connections with 72 countries. These relationships help train future researchers and build international scientific connections. We recruit, train and mentor hundreds of young scientists each year in schools, as university students and as doctoral candidates.

Building science capability for Australia is an important part of CSIRO’s culture.  We know our people like the work and find it meaningful.  Exit interviews invariably tell the same story “I loved my work here because I knew it was making a difference”. Our externally conducted staff survey tells us our people are more engaged than ever before.  Our absentee rate is less than half that of the Australian Public Service and our turnover is low.

This contemporary view of CSIRO as evidenced in our staff measures, has also been validated by our external clients. In a recent pilot client survey, the average willingness-to-recommend score was 8.6 out of 10. Our long term research alliances with Boeing, GE, Orica and many others are a further validation of our contribution to industry.

We do have areas to improve.  We have had claims of unacceptable behaviour made by former employees and I have addressed those directly. A number of internal actions are in place as well as an independent external review which is underway.  CSIRO has been criticised by some for being silent on this issue but we must respect the privacy of all involved and it is not appropriate to discuss or defend details of alleged cases in public.

The men and women who work at CSIRO are among the most passionate, committed and hard working in Australia. It is a privilege to lead CSIRO and I am proud of the evidence I get every day of the difference we make to the lives of Australians.


Peak Helium? – don’t worry

I read the other day about a theme park in Japan which had suspend sales of helium-filled balloons because of a temporary global shortage in the gas. Like a lot of things which flit across the internet powered computer screens of today, it pays to have a bit deeper dig before taking some of the claims to the street.

It turns out the estimated worldwide helium reserves are forecast to last for about the next 300 years at today’s usage rates – hardly a reason to stockpile.

Anyway, putting that aside, I started to read up on helium and it is a very interesting gas. Read on.

helium

Colorless, odorless, tasteless, non-toxic, inert, AND monatomic (one atom), helium’s boiling and melting points are the lowest among the elements and it exists only as a gas except in under extreme conditions.

While it is the second lightest element, it is also the second most abundant element in the observable universe. That means that at about 24 per cent of the total mass, it is more than 12 times the mass of all the heavier elements combined.

On Earth it is rare. Most helium is created by the natural decay of heavy radioactive elements (thorium and uranium) and is trapped with natural gas in concentrations up to 7 per cent by volume. The greatest natural concentrations of helium are found in natural gas, from which most commercial helium is extracted.

About a quarter of the helium we use is for keeping stuff cool, particularly superconducting magnets, such as those used in MRI scanners. (Apparently, the second largest use is at parties for blowing up balloons and for inhaling to make your voice squeaky.)

The US is the largest supplier of helium. The bulk extraction of helium in the US began after an oil drilling operation in 1903 Kansas produced a gas geyser that would not burn. It was analysed and found that 1.84 per cent of the gas sample was helium and there were great wads of it under the American Great Plains.


Friday Fish Time

350px-Lampanyctodes_hectoris_(Hector's_lanternfish)2

The anatomy of Lampanyctodes hectoris
(1) – operculum (gill cover), (2) – lateral line, (3) – dorsal fin, (4) – fat fin, (5) – caudal peduncle, (6) – caudal fin, (7) – anal fin, (8) – photophores, (9) – pelvic fins (paired), (10) – pectoral fins (paired)

As it is Good Friday I thought I would look into the association of fish with Christianity and religion in general. However, that turned out to be way too hard and full of potholes I just could not be bothered navigating around – and I’m trying to pack the swag for camping.

So, rather that concentrate on one fish I have “researched” Wikipedia for a description of all fish.

Here you go:

A fish is any member of a paraphyletic group of organisms that consist of all gill-bearing aquatic craniate animals that lack limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish, as well as various extinct related groups. Most fish are ectothermic (“cold-blooded”), allowing their body temperatures to vary as ambient temperatures change, though some of the large active swimmers like white shark and tuna can hold a higher core temperature.

Fish are abundant in most bodies of water. They can be found in nearly all aquatic environments, from high mountain streams (e.g., char and gudgeon) to the abyssal and even hadal depths of the deepest oceans (e.g., gulpers and anglerfish). At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates.

The earliest organisms that can be classified as fish were soft-bodied chordates that first appeared during the Cambrian period. Although they lacked a true spine, they possessed notochords which allowed them to be more agile than their invertebrate counterparts. Fish would continue to evolve through the Paleozoic era, diversifying into a wide variety of forms. Many fish of the Paleozoic developed external armor that protected them from predators. The first fish with jaws appeared in the Silurian period, after which many (such as sharks) became formidable marine predators rather than just the prey of arthropods.


Friday Fish Time

By Sarah Wilson

Today is World Water Day. In the spirit of this day I would like to pay homage to all things freshwater. In particular I would like to draw your attention to a peculiar fish found in the depths of the largest freshwater lake in the world : behold the Golomyanka.

golomyanka

OK, I admit it is a rather unassuming looking fish, but looks can be deceiving. Golomyankas, also known as Baikal oilfish, are only found in one place in the world – Lake Baikal . This UNESCO World Heritage Listed Lake is located in nippy Siberia. It is 25 million years old, contains one fifth of the world’s unfrozen freshwater, and is home to a staggering number of plant and animal species found nowhere else in the world. Earning it the nickname of ‘the Galapagos of Russia’.

As for the fish, it’s pretty amazing too:

Nerpa seal

The nerpa seal – yes, the Golomyanka does seem to contain a lot of fat….

Amazing fact No. 1: They are the world’s most abyssal fish. This means they live in the entire range of depths found in Lake Baikal. That’s a span of up to 1700m below the surface of the water. The pressure of going to these depths would easily crush a human.

No. 2: They rapidly melt in sunlight leaving only oil, fat and bones. (Imagine that!)

No. 3: It is one of only a few viviparous fish in the world. Viviparous means that it doesn’t lay eggs, but gives birth to live young . It gives birth to up to 3000 larvae at a time.

No. 4: They are a primary food source for the Lake Baikal’s nerpa seal. One of the few exclusively freshwater seal species found in the world.

No 5: They have a high fat content (over a third of their body weight is made up of fat). Native Siberians have been known to use them as fuel for their lamps.


The search for lost Apollo 11 tapes

By John Sarkissian

About the author

John is an Operations Scientist at the CSIRO Parkes Radio Observatory. His main responsibilities are operations and systems development, and the support of visiting astronomers with their observations. John is a member of the Parkes Pulsar Timing Array team that is endeavouring to use precision pulsar timing to make the first direct detection of gravitational waves. In 1998–99 he acted as a technical advisor for the film The Dish. John has received two NASA Group Achievement Awards and, in 2010, received an official NASA commendation for his search for the missing Apollo 11 tapes.

UPDATE: They have found the engines. How hard can it be to find some video tapes!

It was one giant leap for mankind and it was taken at 12:56 PM (AEST) on 21 July 1969. Six hundred million people, one sixth of mankind at the time, witnessed the Apollo 11 moonwalk live on television.

368235main_Apollo_11_2_minute_montage_HDthumb

As a six-year-old school boy, I was one of those millions. Sitting cross-legged on the floor of the school assembly room with my fellow first graders, we watched the events unfold on a small black and white television screen perched at the front of the assembly room. We were spellbound by the dark, fuzzy images flickering on the screen. How did they do it? How did those pictures get from the Moon to my Sydney school? Why were the pictures so dark and ghostly looking?

Little did I know then, but three decades later I would find myself working at the CSIRO Parkes Observatory, at the very place those images were received and that I would have the opportunity to answer those childhood questions. This article is a personal account of my research into the Parkes support of Apollo 11 and how it eventually morphed into a search for the missing Apollo 11 tapes. It’s been a roller-coaster ride, with many highs and lows plus a few twists and turns to make it interesting. Along the way, I’ve met many fine and dedicated people, some of whom are now close friends. This is our story.

Some background

At 12:54 PM (AEST) Buzz Aldrin switched on the lunar module camera that would transmit the TV pictures of Armstrong descending the lunar module ladder. Three tracking stations received the signals simultaneously. They were the 64-metre Goldstone antenna in California, the 26-metre antenna at Honeysuckle Creek near Canberra and the CSIRO 64-metre dish at Parkes. The signals were relayed to Houston, where a controller selected what he thought were the best pictures for release to the US television networks and distribution to a worldwide audience.

In the first few minutes of the broadcast, Houston alternated between its two stations at Goldstone and Honeysuckle Creek, searching for the best quality pictures. When they finally switched to Parkes, the pictures were so much better that they stayed with Parkes for the remainder of the 2½ hour moonwalk. From an analysis of the videotapes of the Extra Vehicular Activity (EVA) and of a recording of the NASA NET 2 communications loop (which controlled the TV reception), the timings for the TV switches are shown below.

Time (mm:ss) Video Transmission

00:00 TV on (upside down) Picture is from Goldstone (GDS). Time is 02:54:00 (GMT)

00:27 Picture is inverted and is now the right way up. Very dark, high contrast image

01:39 Houston TV switches to Honeysuckle Creek (HSK)

02:20 Armstrong steps onto the Moon. The time is 02:56:20 (GMT)

04:42 Houston TV switches back to GDS. Picture is negative

05:36 Houston TV switches back to HSK

06:49 Houston TV switched back to GDS. Picture is positive again but still dark

08:51 Houston TV switches to Parkes (PKS). Remains with Parkes for the remainder of the 2½ hour lunar EVA

From these timings, and other evidence, it is clear that at the start of the EVA, Goldstone was experiencing problems with its TV, resulting in high contrast, dark images. The Honeysuckle Creek pictures were better but they suffered from a lower signal- to-noise ratio, thus resulting in grainier images. The pictures from Parkes were the best of the three and it was these that NASA broadcast for the majority of the lunar EVA.

Television from the Moon

The Apollo Lunar Surface Camera was developed by Westinghouse and was a technological marvel of its time. The lunar module was power and bandwidth limited, so it was not possible to transmit commercial standard TV directly from the Moon. Instead, a slow-scan TV (SSTV) system was used that required less power and bandwidth. The SSTV system transmitted b/w pictures at 10 frames-per-second with only 320 lines-per-frame. In order to broadcast this to the watching world, it had to be scan-converted on Earth to commercial TV standards. An RCA scan-converter was used that operated on an optical conversion principle. It was a simple system that worked well on previous Apollo missions. Essentially, as each single SSTV frame was received on Earth, it was displayed on a small 10-inch b/w slowscan monitor. A Vidicon camera was pointed at the screen and imaged the frame at the standard commercial TV frame rate. It was the output of this camera that was broadcast to the world. In this way, a 30 frames-per-second, 525 lines-per-frame, TV picture was achieved. As you can imagine, it’s not an ideal method of scan-converting the pictures but it seemed adequate at the time.

Chief of the CSIRO Radiophysics Division, Dr Edward 'Taffy' Bowen (right), with Dr John Shimmins, deputy director of Parkes Observatory, in the control room watching the moonwalk (21 July 1969).

Chief of the CSIRO Radiophysics Division, Dr Edward ‘Taffy’ Bowen (right), with Dr John Shimmins, deputy director of Parkes Observatory, in the control room watching the moonwalk (21 July 1969).

The Goldstone TV was scan-converted on site and relayed directly to Houston via microwave relays and landline. The Honeysuckle Creek TV was scan-converted on site also, and relayed to the Overseas Telecommunications Commission (OTC) Paddington terminal in Sydney, referred to as ‘Sydney Video’. Meanwhile, the Parkes baseband signals were relayed to Sydney Video, where the TV was separated from the telemetry stream and scan-converted there.

At Sydney Video, a NASA controller would select the best of the Honeysuckle Creek or Parkes pictures, and pass that selection on to Houston. His selection would simultaneously be recorded on to 2-inch videotape on an Ampex VR660 recorder. The selected TV would be sent via microwave relays to the Moree Earth Station in northern NSW, then via the Intelsat III geostationary satellite to the United States and then finally along the AT&T landlines to Houston. At Houston, the controller would select the best of the Goldstone or Australian feeds for worldwide distribution. In a further twist, the Australian selection at Paddington was split and sent to the ABC Gore Hill studios for distribution to Australian networks. Consequently, the Australian TV did not have to travel via satellite to the US and back again. This meant that a transmission delay was not present, so Australian audiences watched the moonwalk 300 milliseconds before the rest of the world!

It is clear that scan-converting the SSTV and relaying it to the world was not an ideal situation. Firstly, the picture being displayed on the scan-converter monitor had to be adjusted manually. This was a subjective exercise, as the scan-converter operator had to adjust the brightness and contrast settings to what he thought produced the best looking picture. Unfortunately, the operator at Goldstone was inexperienced, and with the pressure of the moment, he got it wrong. At Sydney Video, the operator, Elmer Fredd, was vastly more experienced. He had helped design the scan-converter and knew it well. In December 1968, he had converted the TV pictures from Apollo 8 at Goldstone. It was no accident therefore, that the Parkes pictures looked the best. In addition, the slow-scan monitors in the scan-converters used high persistence phosphor screens so that the pictures could persist long enough for the Vidicon camera to image them. Unfortunately, a side effect of this was that the images, especially of bright, moving objects (like astronauts), persisted between frames, resulting in the ghosting of the images. Another problem was that the scan-conversion process, introduced additional signal noise and a lower resolution picture.

To make matters worse, relaying the signals via microwave relays, landlines and geostationary satellite added even more signal noise and transmission errors. The result of all these systematic problems was that the TV that the world saw was severely degraded and compromised. We could do much better today. As the video and telemetry downlink was being received at the stations, it was recorded onto 1-inch magnetic data tapes at a rate of 120 inches-per-second. These tapes had to be changed every 15 minutes for the entire duration of the moonwalk. Clearly, if we could find these tapes, we could replay them and recover the original SSTV pictures. With modern image processing techniques, we could enhance them even further and release them to the public.

"The Dish"

“The Dish”

The tape search begins

Soon after arriving at Parkes in 1996, I learned of a minor controversy about the exact time that the first TV from the Moon was received at Parkes. The Director of the Parkes Observatory at the time, John Bolton, had always insisted that he had received the TV signal from the very beginning when the camera was switched on at 12:54 PM (AEST).

The Moon was not scheduled to come into view at Parkes until 1:02 PM – a full eight minutes later, so there was some doubt. However, I soon learnt that there were two feeds installed in the focus cabin on the day. Realising that the moonwalk was imminent, Bolton was able to receive the signals with the less sensitive off-axis receiver. He carefully aligned the off-axis beam on the Moon and was able to track it until it reached the telescope’s 30-degree elevation horizon at 1:02 PM, after which he could track it normally with the main beam. My calculations showed that this was indeed possible, but I wanted to know for certain. Also, the signal being received by the off-axis feed would have been unstable and probably of a much lower quality, so I wanted to know by how much. I thought that if I could find the original data tapes that contained the signals recorded at Parkes, I could replay them and confirm my conclusions. At this time also, there was still some doubt about the sequence of switches in the broadcast of the TV, so by finding the tapes from the other stations, I could compare their picture quality with the existing video recordings and determine the sequence for certain. A bonus was that we could also recover the original SSTV, which I knew by then was of a much higher quality.

Beginning in the late 1990s I contacted various NASA centres requesting the whereabouts of the data tape recordings. I made countless phone calls, wrote emails and letters to whomever I thought might know where the tapes were located. But, it was all to no avail. No one seemed to know where the tapes were. In fact, many had trouble understanding what exactly I was after. I was convinced that the tapes must still exist somewhere, but where? In 2001 I obtained a Polaroid picture taken directly off a slow-scan monitor at Sydney Video. When compared to the existing scan-converted video image of the same scene, it clearly showed how much better the original SSTV was to the scan-converted videos. So, I persisted.

Also in 2001, the film The Dish premiered in the US and this prompted several past and present NASA personnel to contact me. Three in particular became good friends and search team members. Stan Lebar was the retired Westinghouse engineer who, in 1969, was the program manager for the Apollo Lunar Surface Camera. Dick Nafzger was the Goddard Space Flight Center (GSFC) engineer responsible for all ground systems hardware in support of Apollo TV in 1969, and was still with NASA. Bill Wood was a retired communications engineer who was based at Goldstone in 1969. The search team was completed when, in 2002, I was contacted by Colin Mackellar, who is an amateur historian and the webmaster of the Honeysuckle Creek website. He is a trained geologist and an Anglican minister in Sydney. Together, we joined forces to search for, and recover, the SSTV recordings.

A breakthrough occurred in 2002 when a former technician from Honeysuckle Creek contacted his former colleagues and Colin Mackellar. He admitted that, in 1969, he had made an unauthorised copy of a data tape that he believed contained telemetry from the Apollo 11 lunar EVA. This caused great excitement. The tape had been stored in his garage for 33 years in less than ideal conditions. If it still contained data, the possibility existed that the SSTV could be recovered from it.

Former Honeysuckle Creek personnel, Mike Dinn and John Saxon organised to have the tape transported to the Data Evaluation Lab (DEL) at the GSFC by the NASA representative in Australia, Neal Newman. The DEL contained the only machines in the world that could play and decode the Apollo data tapes. At the DEL, Dick Nafzger replayed the tape with his team. Unfortunately, they discovered that the tape only contained data from a 1967 simulation. The technician had copied the wrong tape. As heartbreaking as this was, it had a positive effect. People suddenly understood what we were after and why we were looking for it. We confirmed that the equipment to replay the data tapes still existed and, most importantly, that even after 34 years the tapes could still retain data.

In 2005, spurred on by this and by new Polaroids from Honeysuckle Creek, Stan and Dick visited the US National Archives in Washington, where all the data tapes from the Apollo era were deposited in the early 1970s – all 250,000 plus tapes. Unfortunately, their search only uncovered a single box of tapes containing Apollo 9 telemetry. The label on the box had details that allowed us to continue the search. Soon after this discovery, we received the alarming news that the DEL was slated for closure in 2006. This would be a disaster because, without the DEL, there would be no way to replay the tapes, and recover the SSTV, if they were ever found. Something had to be done.

The formal search

In February 2006 I visited the DEL and also gave a series of talks at various NASA centres to explain our search. On my return, I compiled a report which slowly began to stir people’s attention. Two months later in July, Stan and Dick were interviewed on national radio on the anniversary of the Apollo 11 mission.

Finally in early August, The Sydney Morning Herald posted a front-page story with the provocative headline ‘One giant blunder for mankind: how NASA lost moon pictures’. This caused a major stir with the story going viral on the internet and news reports appearing on the American TV networks and other news organisations worldwide. Interest became so intense that in August 2006 the NASA Administrator, Michael Griffin, formalised the search and appointed the GSFC deputy director, Dorothy Perkins, to head the search. Dick was the technical lead. The first decision made was to not close the DEL.

With the full resources of NASA brought to bear on our search, we were confident that we would now finally locate the tapes and release the SSTV to the public by Christmas. But it was not to be. Soon after the formal search began, documents were found that suggested that the tapes may have been erased in the early 1980s. This was disturbing news. We were searching for just 45 tapes from over 250,000 tapes of the Apollo era. Surely, these few would have been put aside for historical reasons. Meanwhile, Colin and I followed up leads from the Australian end and provided advice. In the US, our colleagues Stan, Dick and Bill became first-class sleuths. They tracked down long retired personnel and uncovered dusty documents from NASA archives, people’s attics and basements.

Slowly and surely, the evidence mounted. We discovered that in the late 1970s and early 1980s NASA had withdrawn all the Apollo era data tapes from the National Archives and erased and recertified them for later use. But why? Apparently, these tapes were manufactured using whale oil to adhere the oxide to the backing. However, in the mid-1970s, the use of whale oil was banned and manufacturers switched to using synthetic oils. The drawback was that if the synthetic oil-based tapes were not stored correctly, they would absorb moisture from the air which made them sticky. Played back at high speed, they would stick to the recording heads and be shredded to pieces. The older Apollo era tapes didn’t suffer from this drawback.

As NASA’s budget was cut back severely in the late 1970s, the need for more tapes to record the increasing volume of data from satellite programs became acute. The enormous number of tapes in the National Archives was now seen as valuable assets. Over a period of several years, they were all removed, erased and recertified. The labels on the tape canisters were cryptic and there was little way of knowing what each of the tapes contained. Our team didn’t find any evidence that the tapes containing the Apollo 11 lunar EVA data were treated differently to the others. We reluctantly concluded that the tapes were, in all likelihood, erased and reused with the rest.

You can imagine how we felt. To understand why the tapes were treated this way, it’s important to realise that they were never intended to be the primary archival media. In fact, there was never any expectation that the magnetic data would survive more than a few decades. They were only meant to act as backups for the real-time communications relays and other data. If there was a failure during a mission, the tapes could be used to recover the information. If however, all went well, then the tapes were no longer necessary. All the vital information was extracted in real-time and archived for analysis at the relevant NASA centres. The TV was successfully seen by the world and the scan-converted video was properly recorded onto archival b/w film that would last for centuries. Few people outside of the tracking stations were even aware of the SSTV or how much better it was. As far as everyone was concerned, all the data was believed to be properly archived – at least until we came along.

The NASA report HERE

The restoration

What to do next? In late 2006 Colin noticed a video clip on Eric Jones’ Apollo Lunar Surface Journal website. It showed Armstrong descending the lunar module ladder that was much clearer than anything we’d seen before. We learnt that the clip was sourced from someone who had previously worked at the GSFC. It appears that he found an old 2-inch videotape of the lunar EVA and made a crude VHS video copy of it. We obtained a copy of this videotape and found that it was most likely a copy of the video recording made at Sydney Video of the Australian selection.

It contained the clearest pictures of Armstrong descending the ladder sourced from Honeysuckle. It also showed the switch to Parkes earlier than in any other known recording. Unfortunately, when the original copy was made, the Ampex recorder was not setup properly and this produced a jittery image with many defects. We spent the next few months searching for the original 2-inch tape, but it has mysteriously gone missing. Early in the search Colin was contacted by Ed von Renouard, the former scan-converter operator from Honeysuckle. On the day of the lunar EVA, Ed had brought his home movie camera to work and recorded footage directly off the screens of his console. One of those scenes was the dumping of the astronauts’ portable life support systems, or backpacks. This occurred several hours after the astronauts had re-entered the lunar module and the TV networks had by then ended their broadcasts. Consequently, as far as we could determine, no other footage existed of the dumping. During the search, we came across many archived copies of the scan-converted TV. We decided to switch our search to finding the best of these scan-converted videos and have them archived properly. We also decided to digitise them along with the Sydney Video and Honeysuckle footage. We would take the best parts of each and compile and restore them into a single video of the lunar EVA.

In 2008 we had a demo restoration produced of selected scenes, which we used to convince NASA to underwrite the $245,000 cost of the full restoration. A week later, Neil Armstrong visited Sydney to address the CPA Australia 125th anniversary celebrations. During his address, Neil Armstrong paid a glowing tribute to the many Australians who worked at the tracking stations and helped to ensure the success of the Apollo 11 mission. Some were present in the audience and were individually acknowledged by him. In a brief ceremony following the event, Armstrong symbolically handed over the Australian disks to Dr Phil Diamond, the then-Director of CSIRO Astronomy and Space Science (CASS) – the custodian of the disks in Australia. He noted that ‘”the restored video is a valuable contribution to space exploration and space communication history”.

This ceremony effectively brought the restoration effort to a close. The Australian disks will eventually be deposited in permanent archival storage, most likely with the National Film and Sound Archive in Canberra. The restored Apollo 11 video can now be purchased online from www.apollo11video.com

The proceeds will go toward the continued search and restoration of the other Apollo mission videos.

Hope remains

In early September 2006, soon after we first received news that the tapes may have been erased, I received a phone call from Peter Robertson, the editor of Australian Physics magazine. He had seen the news items regarding the missing Apollo 11 tapes. He phoned to tell me of a letter he had received from John Bolton in the early 1990s. Bolton had mentioned some videotape players that were in the Parkes control room during the Apollo 11 mission. I informed Peter, that we weren’t looking for videotapes but rather magnetic data tapes containing telemetry of the mission. I asked him to send me a copy of the letter anyway.

For many years, I had photographs from the CASS Photo Archive of scenes taken inside the Parkes control room during Apollo 11. Several photos showed a man standing beside Ampex VR660 2-inch videotape players. The Ampex players could only record standard television pictures, so I had no idea what they were doing at Parkes. I also didn’t know who the man standing beside them was, or what he was doing there.

A few days after Peter phoned, the Bolton letter arrived and I was stunned. The letter did indeed describe the Ampex video recorders and, more importantly, Bolton mentioned that they came with their own engineer from Johns Hopkins University in Baltimore. Could this engineer be the mystery man? I knew that Johns Hopkins was the home of the Applied Physics Laboratory (APL), a regular NASA contractor.

In late November 2006, we received definitive evidence that the tapes had been erased. It was then that I sent the information on the possible identity of the engineer to my US colleagues. They immediately set out to find him. Within a few weeks, they found old newsletters from APL that positively identified him. He was contacted and interviewed by Bill and Stan. What he told them lifted our spirits. According to the engineer, in April 1969, the APL was contracted by the GSFC to modify existing Ampex VR660 video recorders to record the non-standard SSTV at Parkes. He was put in charge of this crash program. It was to be an experimental backup recording in case the TV could not be relayed to Houston. This secondary recording was only made at Parkes and if it worked, it could be used on future missions. He reported that the recording succeeded and that he returned to the US with two reels of 2-inch videotape containing the SSTV.

The whereabouts of this videotape was now a mystery. An extensive search was conducted at APL that turned up two tapes that seemed to match the description. Dick organised the loan of an Ampex VR660 video player and a slow-scan monitor from two museums. His team played back the tapes at DEL and found that they were all blank. Again, we were disappointed. Importantly, there was no documentation to suggest the tapes were erased or destroyed. We are working on the assumption that they still exist somewhere, so our search for them continues.

The most striking thing for me was how, just as we were at our lowest ebb, John Bolton appeared, from beyond the grave, to direct us in our search. It was like he was saying, “Hey, look over there. That’s where you’ll find what you’re looking for.” Hope remains.

Links:

More information on the Parkes Apollo 11 support and the search for the tapes can be found here:

http://www.parkes.atnf.csiro.au/news_events/apollo11/
http://www.parkes.atnf.csiro.au/news_events/apollo11/apollo11_sstv_search_report.html

This is the official NASA search report release in 2009:
http://www.nasa.gov/pdf/398311main_Apollo_11_Report.pdf

This is the page setup in 2009 to publicise the Parkes Apollo 11 40th Anniversary:
http://www.csiro.au/science/Apollo-11-and-Parkes-telescope

This is the site for purchasing the Apollo 11 restored video DVD:
http://www.apollo11video.com/

Acknowledgments

I wish to express my gratitude to Professor Marcus Price, officer-in-charge of the Parkes Observatory in 1997, for asking me to research the Observatory’s support of the Apollo 11 mission, and to Dr John Reynolds, officer-in-charge from 1999–2008, for his continued support throughout. I also thank Marshall Cloyd for giving me the opportunity to search for the tapes a little closer to the source in the United States. Finally, to my friends Bill, Dick, Colin and Stan – thank you.


Follow

Get every new post delivered to your Inbox.

Join 2,850 other followers