Pluto pointers: nine bite-size facts about the dwarf planet

New Horizons’ flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

New Horizons flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

By Adam Knight

We’re playing a vital role in NASA’s New Horizons mission, the first ever attempt to visit Pluto. Learn more about this historic exploration, and our other astronomical feats, at #CSIROSpace.

It’s more than five billion kilometres away, is smaller than our moon and it’s not even a planet. So why have we spent nine and a half years hurling a probe to the far reaches of the Solar System, just to catch a brief glimpse of a tiny ice dwarf known as Pluto?

Well for one, we know hardly anything about the composition of the dwarf planet and its moons. Learning more about how they formed will help us better understand the origins of our solar system.

But who knows what other secrets might be unlocked by the New Horizons spacecraft and its suite of scientific instruments: what ‘unknown unknowns’ we might discover when the data starts streaming on July 14?

Before the teams at NASA and John Hopkins University sink their teeth into this bounty of information, we thought we should take stock of some of the things we DO know about this odd chunk of ice and rock that sits on outer edge of the solar system.

1. Believed, and then seen: Pluto’s location was originally predicted by Percival Lowell in 1915, before being officially discovered on February 18, 1930 by Clyde Tombaugh at the Lowell Observatory in Arizona, USA.

2. When in Rome: Pluto was named by an 11 year old girl, Venetia Burney, after the Roman God of the underworld. Thankfully Pluto was chosen over the other options like Zymal, Constance and Cronus.

3. Out of its world: A list about Pluto would be incomplete without talking about the loss of its planet-hood status. In 2006 the International Astronomy Union finalised the definition of a planet, sadly Pluto was unable meet the criteria. Because Pluto is ‘unable to clear the neighbourhood around its orbit’ it was downgraded to the first ever dwarf planet.

4. You thought dial-up was bad: Even at the speed of light it will take 4.6 hours for our team at the Canberra Deep Space Communication Complex (CDSCC) to receive data from New Horizons.

5. Pluto’s pups: There are five moons in orbit around Pluto. Charon, the largest was discovered back in 1978. Hydra, Nix, Kerberos and Styx were all discovered between 2005 and 2012.

6. In’n’Out: At its closest point to the Sun or its ‘perihelion’ Pluto is 4.4 billion kilometres away. When it reaches its ‘aphelion’ or the point where Pluto is furthest from the Sun, the ice dwarf is 7.3 billion kilometres away from the warmth of our star. Because of this orbit, Pluto is periodically closer to the Sun than Neptune.

Just how dim is the sunlight on Pluto, some three billion miles away? This artist's concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn't as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

Just how dim is the sunlight on Pluto, some three billion miles away? This artist’s concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn’t as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

7. Long days, longer years: The length of a Pluto day is equal to 6 days, 9 hours and 17 minutes, compared to Earth’s 24 hours. It takes Pluto a whopping 247.9 Earth-years to complete one orbit of the Sun.

8. Bring a jacket: Temperatures on the planet range from a balmy -210C to -235C.

9. A rock and a cold place: Pluto is made up of one third frozen water with the remaining two thirds consisting of rock.

The New Horizons spacecraft is due to pass by Pluto on the 14th July, and our team at the CDSCC are ready to receive the first ever images and video as they’re sent through. NASA will be making much of it available soon after, so stay tuned as we will be sharing these images on our blog, Facebook, Twitter and Instagram.


5 things you need to know about today’s leap second

We're going back to the Future! Well, sort of...

We’re going back to the future! Well, sort of…

Did you know you’ve got an extra second up your sleeve this morning? You might not realise it, but the minute beginning at 9:59am AEST today will, officially, last for 61 seconds.

But beyond giving you some extra time for your morning crossword puzzle, or putting you ever so slightly ahead of schedule, why do we bother with leap seconds?

As with many things, it’s a question of time and space:

1) We do it because…

Astronomical time and atomic time don’t see eye to eye. The Earth’s rotation is actually a bit wobbly, which accounts for seasons, solstices and sunburn in summer. But it also means that over time, Coordinated Universal Time (UTC*) – which is kept on a collection of super-accurate atomic clocks – gets a little out of sync with Universal Time (or UT1). UT1 is based on where our planet is situated in relation to the Sun, wobbly spin and all.

Our planet’s official time keepers, aka the International Earth Rotation and Reference Systems Service aka the worst place in the world to be late for work, decreed that every few years we need to add an extra second to our UTC calendar, so that we can stay on track with Earth’s spin.

And that’s what is happening this morning: instead of our clocks counting seconds from 59 to zero, clocks are adjusted to count to 59, then 60, then zero.

2) An atomic clock is…

Ahead of its time, literally. Atomic clocks are regulated by the vibrations on an atomic scale, and are so accurate that they’re used as the primary standards for international time distribution services. But as we’ve explained, they’re so good that they also put us out of whack with Universal Time.

The US Government's first official atomic clock, built in 1949.

The US Government’s first official atomic clock, built in 1949.

Atomic clocks are important to our everyday way of life. Without them, GPS navigation wouldn’t work, the Internet wouldn’t synchronize, and the position of the planets would not be known with enough accuracy for space probes and landers to be launched and monitored.

There are atomic clocks ticking all around the world. Australia has one in Sydney, at Lindfield, that’s managed by the National Measurement Institute. But there’s also a bunch in Japan, in the US and Europe.

3) Leap seconds can cause trouble with…

A few things. Because leap seconds happen at irregular and ad hoc intervals (anywhere between one and seven years, and often announced only six months in advance) software developed for big pieces of equipment like telescopes and spacecraft can be caught off guard. An example: our pulsar astronomy team use telescopes to predict the arrival of pulses to nano and even micro seconds. If UTC leaps forward a full regular second, and their software isn’t updated, it can result in huge disagreements in the data.

It can have real implications on the ground too. The last leap year in 2012 caused significant disruptions to airlines in Australia, and this time around it could potentially wreak havoc with trading markets, web operations and 60 second microwave meals.

4) It’s happening at…

10am this morning, AEST. That’s midnight for the UTC, but if you’re in Adelaide it will be at 9:30am or 8am if you’re in Perth.

5) You need to do…
Not much. Most connected devices that use network time protocols, like computers, phones and smart watches, will update themselves. But anything you might need to set yourself, like a normal watch or your old kitchen clock, will need to be changed manually. And hey, while you’re at it, you might like to alphebetise your record collection and colour-code your undies drawer.

Or, if you’re really picky, you could just use a quasar to keep time:

*formerly known as Greenwich Mean Time


PLUTO: T-20 Days and Counting

Nicholas Kachel:

The final countdown begins! New Horizons is on the home stretch for its ever-so-brief celestial encounter with Pluto, and it’s safe to say we’re getting a little excited. Read on to find out what the spacecraft will be doing once it reaches this distant world. And for more #CSIROSpace news, be sure to fly over to http://www.csiro.au/en/Research/Astronomy

Originally posted on Universe @ CSIRO:

Australia’s key role in NASA’s New Horizons mission

Historic Encounter: Artist's concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA Historic Encounter: Artist’s concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA

After a voyage of 3,443 days and travelling nearly 5 billion kilometres from home, NASA’s New Horizons spacecraft is now just 20 days away from its historic encounter with the distant world of Pluto.

The science team located at the Applied Physics Laboratory (APL) at the Johns Hopkins University in Baltimore, Maryland and the Southwest Research Institute (SwRI) in San Antonio, Texas have been dreaming of this moment since plans for the mission were first hatched back in 1989.

Key to the success of this mission are the powerful, yet ultra-sensitive communication dishes at the Canberra Deep Space Communication Complex – a part of the Deep Space Network (DSN) – one of three NASA tracking stations located in Australia, Spain and USA.

Listening for Whispers: Canberra Deep Space Communication Complex. Listening for Whispers: Canberra…

View original 899 more words


Perytons: finding our ghost in the machine

What's the source of mysterious radio signals at The Dish?

What was the source of mysterious radio signals at The Dish?

By Indra Tomic

What do the smell of lasagna, hunger pangs and a cosmic radio signal have in common? The surprising answer was discovered by our scientists at The Dish telescope this week when they went on a search to track the source of a mysterious radio signal known as a ‘peryton’.

Despite baffling scientists for years, the team had always suspected the origin of the signal was local to the telescope. And as more and more perytons were discovered, and only during office hours weekdays, suspicion quickly fell on human activity, and then the lunch room…

So, how did we found our own ‘ghost in the machine’?

In December 2014 the team installed a Radio Frequency Interference (RFI) monitoring antenna at The Dish. It was hoped this piece of equipment would help us detect any unwanted signals, like these perytons, so they could be eliminated.

Just one month later astronomers searching for fast radio bursts with the 64m dish detected three perytons on three separate days. By comparing them against the data from the RFI monitoring antenna, we realised that they appeared at the same time as the operation of a microwave.

This gave us the first clue as to their possible origin.

It was only after further testing that we eventually confirmed their true origin – the perytons appeared when the microwave doors were opened mid-operation. Bingo!

Scooby Doo gif

And we would have gotten away with it too, if it weren’t for you meddling scientists!

The RFI monitoring antenna helps us pick up all sorts of radio emissions – from mobiles and tablets all the way through to electrical devices like motors and generators. By installing equipment like this we are trying to achieve ‘radio quiet’ at our observatory sites.

Radio quiet zones are hugely important to astronomers. Any radio frequency ‘noise’ could interfere with the already weak astronomical radio signals being received, thereby reducing the ability to unlock more mysteries.

Within only a few months of installing the RFI monitoring antenna at The Dish, this piece of equipment immediately showed its worth by helping us solve this strange little mystery.

So for the world of space science you could say one cosmic mystery down, a million more to go.


Uncovering the mystery of stellar nurseries

The Cepheus Flare just one of the stellar nurseries in the night sky where stars are formed. Image: NASA Astronomy Picture of the Day/ Stephen Leshin

The Cepheus Flare just one of the stellar nurseries in the night sky where stars are formed. Image: NASA Astronomy Picture of the Day/Stephen Leshin

Claire-Elise Green wants to time travel. She wants to peer into the stellar nursery of the cosmos and understand how stars are formed, in their infancy, billions of years ago. To do this she needs access to multi-billion dollar telescopes, astronomical amounts of data and the time to work with the best and brightest in the field. Not something you can just Google.

This is why she is heading to the Max Planck Institute for Radio Astronomy in Bonn, Germany to work with the equipment, data and experts needed to further her PhD research. This isn’t a cheap European getaway by any stretch of the imagination.

The winner of the inaugural CSIRO Alumni 2015 Scholarship in Physics award: Claire-Elise Green

The winner of the inaugural CSIRO Alumni 2015 Scholarship in Physics award: Claire-Elise Green

But Claire-Elise took a big step towards financing this journey when she was selected as the first ever recipient of the CSIRO Alumni 2015 Scholarship in Physics award.

The award was setup in honour of the four physicists who sadly lost their lives – two years ago – in a tragic accident, with a view to helping young Australians finance their projects and research in physics.

After beating out 14 other entries, Claire-Elise was handed the award and the $5000 scholarship fund at a ceremony in Lindfield, NSW.

Before she heads off to Germany with her novelty over-sized cheque, we had a chance to sit down and speak with Claire-Elise about her research, her time with us and her passion for science.

Mastering Blob-ology

Claire-Elise’s scholarship winning project seeks to understand the birth of stars. So she scours the sky, looking for ancient molecular clouds in the deep dark recesses of space. These clouds play the role of stellar nurseries and look like large blobs with a radio telescope, so naturally she refers to this area of research as blob-ology.

Deep within the blob (and with the help of incredibly sensitive high resolution telescopes) you can find strings of gas and dust which appear within the cloud. These strings, called filaments, are the focus of Claire-Elise’s PhD, supervised by Dr. Maria Cunningham at UNSW, and our very own Dr Joanne Dawson.

Observations with James Clerk Maxwell Telescope (JCMT) of a molecular cloud and then the same region observed at higher resolution with The Atacama Large Millimeter/submillimeter Array (ALMA) Images: Rathborne et al. 2014 and 2015 papers

Blurry blob and clear blob: Observations through the Maxwell Telescope (JCMT) of a molecular cloud and then the same region observed at higher resolution with The Atacama Large Millimeter/submillimeter Array (ALMA). Images: Dr Jill Rathborne

In the process of star formation, dense regions of gas and dust within the molecular cloud collapse under gravity to form star forming cores. Most of these star forming cores have been found to lie on these dense filaments of gas like beads on a string. The role of these filaments in the star formation process, however, is currently unknown.

While she has had access to the Australian Compact Telescope Array near Narribri, and the Mopra Telescope, near Coonabarabran there is still lots of work to be done in this relatively new field of astrophysics and the time she will spend at the Max Planck Institute will further her understanding of the cosmic cabbage patch.

This PhD research into star formation is the culmination of many years of study back here on Earth.

A passionate scientist from a young age, Claire-Elise cites our Double Helix magazine as an early inspiration for all things scientific (please excuse the shameless self-promotion).

As she moved into high school she was fortunate enough to be part of a program designed to encourage young women to engage with science. Indeed, she chose to complete a Bachelor of Advanced Science majoring in Physics at University. And even though she was considering a double major including chemistry, we won’t fault her for taking the easy road and sticking to a single major!

In order to get some real world experience she completed two summer programs with our scientists where she collected her own data with the telescope at Parkes and the array of telescopes at Narrabri, she even used this opportunity to be get published.

Not only did she spend valuable time in the field where she could get her hands dirty and experience the realities of modern research, she also had the opportunity to rub shoulders with inspirational scientists like our own Dr Julie Banfield and Dr Jill Rathborne. Oh and she got to take a hayride on the world famous ‘Dish’ and take some memorable pictures.

Ever wanted to know the perks of being a scientist? How about riding the world famous Dish as it completes a “hayride” with you on board? from left to right: James Neild, Daniel Reardon, Tiffany Day, Claire-Elise Green, Sarah Hegarty. Image: Dr Yiannis Gonidakis

Ever wanted to know the perks of being a scientist? How about riding the world famous ‘Dish’ as it completes a “hayride” with you on board? From left to right: James Neild, Daniel Reardon, Tiffany Day, Claire-Elise Green, Sarah Hegarty. Image: Dr Yiannis Gonidakis

Through all these experiences and with the example set by her mentors like Dr Cunningham, Dr Dawson and Dr Rathborne, Claire-Elise developed into a scientist with a passion for encouraging more women to try science, as she says – they tend to “rock at it”.

Before she departs for Europe and the next stage of her research career, she hopes to find some time to indulge in her favourite pastimes: tending her vegetable and herb gardens and enjoying a bit of the old ‘Crafternoon tea’ (that’s an afternoon tea coupled with crafts if you are unfamiliar with the term). When you are searching for the answers to the some of the universe’s biggest questions, it pays to stay grounded.

You can hear more about Claire-Elise’s research in her own words on Thinkable.org. Don’t forget to vote for her while you are there.


A new antenna for old friends: celebrating 55 years of AUS-US space communication

NEW VISTAS: Deep Space Station 35 will operate for many decades. We can only begin to imagine what future discoveries it might make. Credit: Adam McGrath

NEW VISTAS: Deep Space Station 35 will operate for many decades. We can only begin to imagine what future discoveries it might make. Credit: Adam McGrath

It’s been a momentous couple of days in the history of Australian space exploration. Just yesterday, the newest antenna in NASA’s Deep Space Network was officially commissioned at our Canberra Deep Space Communication Complex, five years to the day from its original ground breaking ceremony.

DAY OR NIGHT: Deep Space Station 35 will be operating 24/7 to help make discoveries in deep space.

DAY OR NIGHT: Deep Space Station 35 will be operating 24/7 to help make discoveries in deep space.

The new dish, Deep Space Station 35, incorporates the latest in Beam Waveguide technology: increasing its sensitivity and capacity for tracking, commanding and receiving data from spacecraft located billions of kilometres away across the Solar System.

The Canberra Complex is one of three Deep Space Network stations capable of providing two-way radio contact with robotic deep space missions. The Complex’s sister stations are located in California and Spain. Together, the three stations provide around-the-clock contact with over 35 spacecraft exploring the solar system and beyond. You may remember this technology being utilised recently for the Rosetta and Philae comet landing; and for communicating with the ever so far-flung New Horizons spacecraft on its journey past Pluto.

"Does it get Channel two?"

“Does it get Channel Two?”

As a vital communication station for these types of missions, the new antenna will make deep space communication for spacecraft and their Earth-bound support staff even easier.

But don’t put away the space candles just yet. For today marks the 55 anniversary of the signing of the original space communication and tracking agreement signed between Australia and the United States, way back on the 26th February 1960.

It is a partnership that has that has led to many historic firsts and breakthrough discoveries – the first flybys of Mercury and Venus, the vital communication link and television coverage of the first Moonwalk, robotic rover landings on (and amazing views from) the surface of Mars, the first ‘close-ups’ of the giant outer planets and first-time encounters with worlds such as Pluto.

The first ever Moon landing: a momentous occasion, broadcast around the world thanks to the Australian-US partnership.

The first ever Moon landing: a momentous occasion, broadcast around the world thanks to the Australian-US partnership.

So, we say welcome to the newest addition to the Deep Space Network and happy birthday to our space-relationship with the US. Here’s to another fifty five years of success!

P.S. We couldn’t finish the blog without including this little gem:

A famous photobomb, taken during the antennae's construction.

A famous photobomb, taken during the antennae’s construction.


Cosmic radio burst caught red-handed

Nicholas Kachel:

An international team of scientific sleuths are putting together the pieces of a cosmic puzzle – attempting to identify the source of powerful “fast radio bursts” that have originated from the far corners of our known Universe. For more #CSIROSpace news, be sure to fly over to http://www.csiro.au/en/Research/Astronomy

Originally posted on Universe @ CSIRO:

A radio antenna at night, showing a yellow graphic line spiralling into the dish from a flash of light in space; representative of receiving the polarised signal from the new 'fast radio burst' detected by CSIRO's Parkes radio telescope. CSIRO’s Parkes radio telescope has detected a new ‘fast radio burst’. This is the first ‘live’ detection of one of these mysterious bursts. Credit: Swinburne Astronomy Productions.

News this week that astronomers using our Parkes radio telescope have detected a short, sharp flash of radio waves from an unknown source up to 5.5 billion light years from Earth is the latest chapter in a cosmic ‘whodunnit’ mystery. We have mounting evidence, a team of detectives, and a good pinch of suspense. All we need now is to find the body.

The evidence
‘Fast radio bursts’ are short and bright: they last only milliseconds but give out an enormous amount of energy.

The first burst was discovered in 2007 by astronomers combing old Parkes data archives for unrelated objects. Five more detections were made from Parkes data before researchers using data collected with the Arecibo telescope in Puerto Rico made the first finding…

View original 469 more words


Follow

Get every new post delivered to your Inbox.

Join 4,681 other followers