Taking our solar technology to the land of the rising sun

Solar field with sun reflected in mirror

We have a sunny outlook when it comes to bringing our solar technology to the world. Our solar field in Newcastle, NSW, with sun reflected in mirror.

Did you know we’re exporting our solar technology to the world?

Fresh from setting a world record last year, our solar team continue to see great demand for our heliostat technology. We recently took this tech and our expertise to Cyprus to help the island nation with its transition to renewable energy, and now we are off to the ‘land of the rising sun’, Japan.

Mitsubishi Hitachi Power Systems (MHPS) are establishing a field of 150 heliostats in Yokohama, for running research projects using CSIRO-designed heliostats. MHPS recently received funding from the Japanese Ministry of the Environment for the purpose of reducing carbon dioxide emissions, and we are delighted that this global leader in energy has chosen our technology; it’s a great vote of confidence.

But it’s not all about success overseas, our solar tech is making a difference to the local car industry as well.

We’re not talking about solar powered vehicles (though we are a fan of solar cars, in fact we’ve developed technology for solar powered cars and tested it at the World Solar Challenge). We’re talking about this technology empowering local companies to transition from the automotive industry to renewables.

We’ve been working with Adelaide-based company, Heliostat SA (HSA) to harness the same skills and equipment they perfected making car parts to manufacture our heliostats. It’s a perfect fit for a company looking to transition its skilled workforce into a new and lucrative industry.

Our heliostat design is unique. It’s smaller than conventional heliostats, and uses an advanced control system to get high performance from a relatively inexpensive design.

Solar Thermal Research Hub

Modern art or a renewable masterpiece? Both? Our solar thermal research hub in Newcastle, New South Wales.

Heliostats are of course the linchpin of solar thermal technology. Consisting of a single mirror hooked up to a computer controller, heliostats work together in large groups – or arrays – to track, reflect and concentrate the sun’s heat onto a single receiver point. It’s sort of like using a magnifying glass to focus the sun’s heat to a point, except we’re not melting toy soldiers and ants. We use this heat to generate electricity, in this instance by heating steam to supercritical (550 degree plus) temperatures to drive a turbine.

This energy can then be stored cheaply as heat in solar thermal systems, giving this technology great potential for medium to large scale power – even when the sun isn’t shining.

This project is another example a decade of solar thermal research coming out of from our energy centre in Newcastle. The continued success and international demand for our technology continues to make a strong case for exporting our solar technology and creating more value for the Australian economy.

For more information on CSIRO’s solar thermal capabilities, visit http://www.csiro.au/en/Research/EF/Areas/Solar/Solar-thermal

Keen to see how the solar tower technology works? We’ve got you covered with this supercritical solar steam video.


Prized exploration technology brings big bucks home

Keith Leslie and Cathy Foley  at the 2015 Clunies Ross Awards.

Keith Leslie and Cathy Foley at the 2015 Clunies Ross Awards.

By Emily Lehmann 

Being recognised as one of Australia’s ‘foremost visionaries’ for your work  is, understandably, a pretty big deal.

But when you’re the brains behind an exploration tool that’s utilising superconducting quantum interference devices (or SQUIDs, for short) to locate more than $10 billion worth of mineral ore discoveries across the globe, it might help explain a few things.

This was the case last week for two of our very own researchers – Manufacturing Flagship deputy director, Cathy Foley and research scientist Keith Leslie – were awarded the prestigious Clunies Ross Award for innovation and commercialisation, thanks to their LANDTEM exploration tool.

This was a particularly momentous occassion for Cathy, who became only the fifth woman to win the award since its inception in 1991.

LANDTEM is a portable exploration tool that’s valuable for detecting highly conductive ores like nickel sulphides, gold and silver. LANDTEM uses the SQUIDs technology to differentiate the target ore from other conductive material or overburden, even for deeply buried ores.

It’s a far less invasive and more targeted technology then, say, drilling, so it’s more environmentally friendly. It’s also incredibly efficient: one company in Canada cut its exploration costs by 30 per cent using LANDTEM.

So, why do we care? Because valuable minerals are found almost everywhere, and they are essential to our life as we know it today. To put it in context, every smartphone contains about 40 different minerals; the average medium-sized car contains 19 kilograms of copper amongst a heap of other metal; and rare earths are needed for green energy products such as solar panels and wind turbines.

Minerals are also an important contributor to our national economy, and are our most valuable export business, worth about $119 billion.

CSIRO_MDU_Exploration_Final-Screen

While we have a wealth of mineral resources, these are finite and most of our deposits near the surface have already been discovered. That’s why we’re developing new efficient tools like LANDTEM to help explorers make valuable mineral discoveries needed for the future.

Cathy and Keith are continuing their valuable work by significantly enhancing the sensitivity and functionality of LANDTEM. Most recently they developed a new and improved version that will be able to detect ore bodies even deeper underground.

Watch this video for a closer look at the development of LANDTEM:

Keep digging over at our Mineral Resources Flagship to learn about similar projects.


Taking remote control of your electricity

 

Man using tablet

Eddy gives people more control over their energy usage, helping them to save money.

By Eamonn Bermingham

Electricity prices, poles, wires, peak demand. Pick any combination of words and you’ll find a raft of news pieces, heated debates and public protests. ‘Poles and wires’ was an issue that led the NSW state election this year, and bill woes led to 58,000 properties in Victoria being disconnected in a single year.

It’s an inescapable cost for the consumer and the environment. But it’s also one that can be managed, by quite literally taking things into your own hands.

That’s why we’ve developed a new system that takes smart metering a step further, allowing consumers to monitor their electricity consumption in real-time and control high-drain devices remotely using an online interface – on a computer, smartphone or tablet.

The system, known by its friends (and the market) as “Eddy”, is being commercialised by Australian company HabiDapt. Eddy will send consumers personalised insights and recommendations about their electricity use, and take part in demand management schemes with incentivised pricing for additional savings. Think of Eddy as your own efficient energy consultant.

This is a terrific example of the Internet of Things (IoT) – where real world items are made smarter by connecting to the internet – sadly not all IoT ideas are a winner: Wi-Fi diapers anyone?

We think Eddy is one of the more grounded systems to come out of the IoT trend. Using cloud-based software and mini smart meters, Eddy allows you to control your appliances remotely. You could even automate the process using the online interface.

The technology is based on our sophisticated Energy Management System, which has also been adapted for use on King Island’s Smart Grid.

The research group behind the electricity management system was led by Brad Sparkes (nominative determinism anyone?), who points out that houses with solar PV installations stand to gain even more, as Eddy can be programmed to prioritise running high-drain devices like pool pumps when the house is generating excess power. If the sun doesn’t shine for a few days, the pool won’t go stagnant, as the system is smart enough to recognise when to use grid power instead.

HabiDapt is currently trialling the technology in homes with solar PV systems in Perth, and is also rolling the system out with Ergon Energy in Townsville, where it is being offered to customers as ‘HomeSmart’.

While Eddy isn’t available to all our readers during the trial phase, we thought we would share some of our favourite energy savings tips:

  1. Use the Green Savings calculator to make your house greener. Use the tool to identify a variety of ways to save on energy and water costs plus a whole lot more.
  2. Use the cold cycle in your washing machine. Heating water during a washing cycle accounts for 90% of the energy use of the appliance.
  3. Be smart about using your dishwasher. Run the dishwasher during off-peak times (often overnight). Ensure that it is full and the dishes are stacked efficiently.
  4. Try not to use the dryer. Opt for a clothes airer or clothesline.
  5. Ditch the beer fridge. Sacrilege I hear you scream! But it will save you a heap of money.

Let us know your favourite power-saving tips in the comments section below. If you would like to find out more about Eddy, visit Habidapt’s website. To learn more about our work in energy, head to our website.


Business beams with new solar cells

The CSIRO research team

The sun provides a huge amount of energy for us and our work on solar cells is helping to capture it.

By Emily Lehmann

Blessed with beautiful beaches and plenty of sunshine, it’s easy to argue that Australia is the lucky country.

Of all our major cities, Perth takes the cake as the sunniest with an average 3200 hours of sunshine annually. Even well-seasoned Melbournians, who live in our least sunny city, get to enjoy an average of 2200 hours of sunshine a year.

So it might not be so hard to believe that Australia is home to the highest solar radiation per square metre of any continent. Not only does this reinforce why ‘slip, slop, slap’ should be every local’s mantra, this high degree of sunshine means that we have some of the best solar energy resources in the world.

Right now, only 1.1 per cent of our electrical energy comes from solar, but this could soon change as new technologies come to market.

Solar cells – like the flexible kind we’re printing – are fast becoming an important player in the renewable energy mix. Thin and lightweight, solar cells can be plastered to almost any surface to harness the sun’s energy and bring you sustainable power.

Solar energy is a business opportunity for Australian industry that’s projected to be worth about US$160 billion internationally by 2023.

Solar cell

A new skin for solar energy. Dyesol’s perovskite based cell is highly efficient.

We’ve been working with Dyesol, a local small-to-medium-sized enterprise (SME) to tap into this growing market and help them become the first to commercialise a new kind of solar cell based on perovskite material.

Dyesol develops cutting edge, clean energy generation solutions for consumers and hopes to be able to offer perovskite solar cells as a competitive alternative to the more widely-used thin-film photovoltaic (PV) cells.

Perovskite solar cells are an attractive option as the material cost is low and they are highly efficient to manufacture. Yet, at this stage it’s uncertain whether the product would have stability and durability over the long-term compared to other solar cells currently on the market.

Together, we’re working to investigate this limitation and improve the process for making perovskite solar cells so that Dyesol can produce a high-quality, sought after product.

We’ve undertaken two Department of Industry projects together, where our flexible electronics experts were brought into Dyesol’s business to help them identify the best way to take the technology forward.

Now, through a longer term partnership, we hope to help Dyesol capture the opportunities that this technology – and our great solar potential – offers Australia and turn their idea into a profitable and globally competitive business.

Want  to find the right expertise and tools to overcome technical challenges and grow your business? Connect with our SME Engagement Centre now.


Putting Cyprus Hill on the map: how we’re bringing our solar technology to the world

Have you ever wondered what it would be like to see a solar field constructed in less than three minutes? Of course you haven’t, but what the heck, here it is.

This timelapse footage was taken on the south coast of Cyprus, where our team recently designed and installed a solar thermal field of 50 heliostats (mirrors that reflect the sun’s heat to a central tower) which could generate enough heat to boil a kettle in less than five seconds.

Super quick cups of tea aside, solar energy has enormous potential for Cyprus.

Being the southern-most member of the EU, the country is blessed with abundant sunshine. However most of the island nation’s electricity is generated – expensively – using oil, making solar an attractive option for power generation.

This is good news for Cyprus which, under European legislation, is required to derive 13% of its total energy consumption from renewable sources by 2020.

These are just some of the driving forces behind the Cyprus Institute’s decision to establish a solar thermal research facility at Pentakamo on the south coast, a stone’s throw from the Mediterranean Sea.

Solar Field low

A Mediterranean getaway like no other. This thermal solar field is part of a plan for Cyprus to generate 13% of its energy requirements through renewable sources. Credit: Cyprus Institute

For the team in our Energy Flagship, this project was a big step, as it’s the first time we’ve deployed this cutting edge technology outside of our own backyard.

“We’ve developed a lot of confidence building our own fields,” said our solar research leader Wes Stein, “but we were glad to step out of our comfort-zone for the Cyprus Institute because we shared a common goal. They’ve been a fantastic partner, and in fact we’ve just signed a MoU to further the partnership and undertake joint solar research with them.

“The project has given us a strong understanding of how to deploy these projects outside of our own safety zone and into other environments. And that’s where we want to go, we want solar thermal to be commercialised by building on the good research that we’re doing now.”

The Solar field of dreams and the dreamers. From left to right: Professor Costas Papanicolas, President of the Cyprus Institute, Mike Collins, CSIRO Mechanical Engineer, Wes Stein, CSIRO Solar Research Leader

The people who made it happen, from left to right: Professor Costas Papanicolas, President of the Cyprus Institute, Mike Collins, CSIRO Mechanical Engineer, Wes Stein, CSIRO Solar Research Leader

With a unique and smaller than usual design, our high-performance heliostats are well suited to the rugged terrain on Cyprus’ south coast. They also give the user more control over the intensity of the solar concentration and versatile installation.

Solar-thermal tower technology uses many mirrors (heliostats) that accurately track the sun, reflecting light towards a receiver on top of a tower which heats a fluid. The heated fluid is then used to drive a turbine for generating electricity and, in the case of the Cyprus Institute’s research, also powering a sea-water desalination plant.

As thermal energy can also be stored relatively cheaply compared to other technologies, there’s great potential for large-scale power generation regardless of when the sun is shining.

The experimental facility in Cyprus will be used for demonstration purposes by the Cyprus Institute. In the longer-term, we will be looking into the commercial use of the technology for other Mediterranean islands and the Middle East.

You can read more about the work we’re doing in solar and other renewable energy here.

Solar field of dreams. Credit: Cyprus Institute

Solar field of dreams. Credit: Cyprus Institute


Walking With Dinosaurs: Advanced science recreates ancient past

Dinosaur footprints in red sandstone

Mighty footprints with a view of Gantheaume Point, Broome. These replicas belong to a large carnivorous dinosaur. Image: © Matthias Breiter

On a sandy bank of north-western Australia, a flock of monstrous birds stride about in the shallow water — squishy, silty mud oozes up between their toes. Among their feathered numbers is a Woodstock of droppings, downy feathers, and clashing footprints. These birds are fearsome, toothed, tailed, and not birds at all, but their forebears: theropod dinosaurs, the group that contains the Velociraptor and T. rex.

The muddy sands that these animals walked in is now stone, and their tracks can be found up and down the 100 km stretch of the Dampier Peninsula coastline, also known as the ‘Dinosaur Coast’.

Those three toed bird-like theropod tracks are by no means the only prints around the coast. Some were also left behind by sauropods with feet that were 1.5 metres in diameter — that is 5’. At least 16 different types of dinosaurs left their impressions with thousands of tracks, even some from ghostly species for which there is no other evidence.

To garner all we can about these spectacular fossil tracks, the Walking with Dinosaurs in the Kimberley research project was born, funded through the Australian Research Council Discovery Project scheme. Headed up by Dr Steve Salisbury from The University of Queensland and Associate Professor Jorg Hacker from Airborne Research Australia at Flinders University, the project brings together an array of experienced and skilled groups including two of our researchers: Dr Robert Zlot, head of Robotic Perception, and George Poropat, Senior Principal Research Scientist in our Energy Flagship.

Together with Dr Mike Bosse from ETH, Zurich, the team is working closely with Goolarabooloo Traditional Custodians and Yawuru Native Title holders to help locate and map the tracks.

Our researchers have been helping the palaeontologists by documenting the 130 million year old tracks using sophisticated 3D imaging technology developed here in our Energy and Digital Productivity Flagships. They have also trained the Queensland team to use the equipment for independent expeditions with the resulting data being sent back to our scientists for processing.

asdf

The world to Zebedee, one of our 3D imaging technologies. Image captured by Anthony Romilio, data compiled by our researchers.

Since GPS data are imprecise, other more specialised devices and techniques are also required. The highest resolution data are gathered by a modified photomapping technology called Sirovision and extensions to some commercial packages. These data can be used to generate high-quality 3D outputs of the subject providing sub-millimetre scale models of footprints.

On a larger scale, Assoc. Prof. Hacker scans the tracks using a specially equipped low-flying aircraft, soaring just 10 m over the rock platforms. The aircraft captures mapping data (high-resolution photos, video, and lidar imagery) as it flies overhead. The data captured by this aircraft can be georeferenced with those from the Sirovision device, enabling data of different scales and resolutions to be integrated.

Airborne Research Australia – piloted by Associate Professor Jorg Hacker. Photo: Damian Kelly

And at yet another scale, we have the amazing Zebedee.

Zebedee is a handheld lidar (portmanteau of light-radar) that maps the environment as you walk. You simply meander through a site holding Zebedee as it beams out 2D ‘sheets’ of laser up to 15 metres into the environment. As it does so, it eagerly rocks back and forth on a spring, making those 2D sheets of information overlap again and again to form a dense and accurate 3D map of the environment. Zebedee initially arose from research into 3D mapping for autonomous robots.

Zebedee has been used to map crime scenes, heritage sites, the interior of the Leaning Tower of Pisa, and now the footprints of reptiles past.

As well as using our nifty Zebedee, Dr Salisbury and the team have also been using a drone to map the prints from above, a perspective on the animals’ movements impossible from human height.

The tides along the coastline are extreme, at some points drawing back 10 metres down the rock platform before creeping back again. The team must do their work in just a few hours before the tides rise up.

A GIF of the rising tides while the team works. Photos: Steve Salisbury

As well as recreating the tracks with high fidelity, Zebedee and the other tools and techniques are integral for preserving these wonders. The tracks are ephemeral and are constantly being eroded by the relentless sea. “A number of tracks that we have documented last year have disappeared as a result of sand movements during the 2014-15 storm,” said Steve.

The Walking with Dinosaurs project is science at its finest: palaeontological rigour, traditional insight, and sophisticated aircraft and imaging equipment. By using these cutting-edge technologies, scientists are simultaneously preserving and recreating an ancient world that would be otherwise unimaginable.

To follow the project, Dr Salisbury (@implexidens) and Dr Romilio (@a_romilio) are on Twitter. For more information about our wonderful Zebedee, check out this page.


Out of the Dark Ages: How solar panels might make blackouts history

#SydneyStorm made it difficult for trees to upkeep their integrity. Our Newcastle solar fields. Picture: Mike Collins.

#SydneyStorm made it difficult for trees to upkeep their integrity. Our Newcastle solar fields. Picture: Mike Collins.

The East Coast Low of April 2015 has been devastating. Lives were lost, countless millions of dollars’ worth of damage and destruction to property was sustained, and hundreds of thousands of homes (along with important infrastructure) lost power.

Thankfully, the water is subsiding and emergency services are turning their focus from rescue missions to the clean-up. At the time of writing, electricity companies are still scrambling to restore power to homes and dozens of traffic lights are not operating in Newcastle and the surrounding areas. We’ve heard stories of barbecue-cooked meals and games of Monopoly by candlelight.

Many CSIRO staff, working from our Energy Centre in Newcastle, have been directly impacted by the extreme weather (author included!). The site itself was at one stage closed due to a loss of power and safety concerns; it’s back operating, but in a limited capacity.

Looking out the window at our solar thermal field, and you can’t help but be struck by the realisation that even the best of us still rely heavily on the central electricity grid.

But for how much longer?

The current model

Existing Australian power grids — in particular the National Electricity Market (NEM) grid — have evolved over the last 60 years. These systems were small in number, but had large and remote generators that provided power at high voltage through a transmission system connected to customers through a lower voltage distribution grid.

This system has one-way power flow; distribution networks divide power from large generators into small quantities for customers. But in natural disasters like the one we’ve just experienced, or during times of peak demand (in the summer months, for instance) the centralised nature of the grid can lead to mass power outages.

The future?

One in seven Australian homes now have solar panels on their roofs — one of the highest rates in the world. This ‘community-based’ approach is known as distributed generation, and it’s set to rise.

Distributed generation infographic

The promises and challenges of a distributed generation (DG) network.

So, could a grid of the future make widespread power outages (like the one we’re currently experiencing) a thing of the past?

According to Dr Sam Behrens, leader of our Demand Side Energy Technologies research group in Newcastle, it’s a definite possibility.

“With the uptake of new technology, we could see more and more individual houses — or even whole new estates — becoming more self-sufficient during these types of events”

“This would undoubtedly lessen the impact of widespread power outages like the one we’re experiencing in Newcastle and surrounds currently.”

This might align with one of the scenarios from our Future Grid Forum, where around one third of consumers disconnect from the grid by 2050. While this is only one of the possibilities, the ability to store energy is the real game-changer under all scenarios for reducing the impact of blackouts.

Leaving the grid scenario

Light years ahead – predictions of energy usage in 2050.

“The technology for storing solar power already exists and although it’s a bit expensive right now, companies like Samsung and Bosch are starting to mass produce these batteries, so I think we’re going to see costs come down dramatically in the next three or four years. It could be on a similar scale to the trend with solar panels, where costs came down one hundred fold in the last 10 years,” said Sam Behrens.

“The growing number of electric vehicles on the road now will also make a contribution, as they can be plugged into the house and used to provide back-up power during outages.”

For those who are in the dark as to what our site in Newcastle looks like/does, here’s a taste tester

Hold on to the Monopoly set for now, but future mass grid defection may be closer than you think.

For more information about our work on a smart, secure energy future, head to our website.


Follow

Get every new post delivered to your Inbox.

Join 4,683 other followers