Australia should export more ideas and fewer greenhouse emissions

Our solar-concentrating heliostats can be used for several purposes, including creating high-energy ‘SolarGas’

Our solar-concentrating heliostats can be used for several purposes, including creating high-energy ‘SolarGas’.

By Alex Wonhas, Executive Director, Energy and Resources 

As climate negotiators meet at the United Nations’ Lima summit, which comes hot on the heels of the landmark US-China climate deal, there is a renewed focus on how the world can move to a lower-emissions future.

As a global energy superpower, Australia can and should play a significant role in ensuring that its exports contribute as few greenhouse emissions as possible. Exporting ideas, technologies and solutions can play an important part in achieving this outcome.

One of Australia’s great strengths is its vast natural resources. Australia is a global top-three energy exporter; by 2018, it is expected to be the world’s largest exporter of liquefied natural gas (LNG), the world’s second-largest exporter of coal, and world’s third-largest exporter of uranium.

All of these exports drive economic growth and a higher living standard, not only in Australia but also in our customer countries. According to mainstream forecasts, this growth is set to continue.

Given the impact of our exports on global emissions, there is debate over whether Australia’s responsibility ends at the harbour gate or extends well beyond.

There are widely diverging responses to this question, ranging from proactive support of exports in the name of economic growth, to calls for an end to fossil fuel exports. Whatever your own position, there is one thing that everyone should be able to agree on: the need to accelerate the development and global deployment of cost-competitive, lower-emission energy technologies.

Developing cost-competitive clean energy technologies is no pipe dream. Australia can be proud of its impressive track record in this field. Take, for instance, solar photovoltaic technologies that have been developed at the University of New South Wales and successfully commercialised in China – an Australian invention now underpinning a significant share of the rapidly growing global solar industry.

Australian ingenuity is a great strength of our nation. Yet when it comes to innovations in the energy sector, we can be bolder. We should stop thinking of ourselves as only a minor contributor to a global effort. We should instead play a role that is commensurate with our status as one of the world’s leading exporters of energy.

A prosperous and sustainable future

Based on our own work at CSIRO, I can see no shortage of potential new ideas that could deliver a prosperous and sustainable energy future. Let me give you three examples.

The high levels of air pollution in China, combined with a rising demand for carbon dioxide for enhanced oil recovery, present a significant opportunity to work with China to develop the next generation of cheaper carbon-capture technologies. Australia has been collaborating with China in this area since 2008, working on the establishment of China’s first post-combustion carbon-capture pilot project. In 2012, Australia helped to launch a second pilot plant that is currently operating in Jilin province, with the capacity to capture 600 tonnes of carbon dioxide per year.

India is not just focused on buying Australia’s coal – it is also interested in Australian technologies such as “SolarGas”, which uses hi-tech “mirrors” to turn solar heat, water and natural gas into a high-value feedstock for the chemical industry. After the successful trial of a 250 kilowatt system in Australia, CSIRO is now discussing plans to build a pilot-scale SolarGas plant in India, where there is a large chemical industry and plenty of sunshine.

Finally, a technology called DICE — which stands for Direct Injection Carbon Engine — has the potential to significantly reduce emissions from coal-fired power stations. DICE is a high-efficiency diesel engine powered by a coal slurry – a mixture of finely ground coal with water. It has the potential to cut carbon emissions by 20-35% from black coal and by 35-50% from brown coal, compared with technologies currently used in Australia.

Much greater emissions reductions are possible if biomass is used as a feedstock instead of coal. DICE should also be able to respond quickly to fluctuating power demand, making it well suited to supporting the integration of renewable generators into our electricity grids.

Following successful tests in Australia over the past few years, CSIRO has now partnered with the global diesel engine manufacturer MAN Diesel & Turbo to develop the technology on a commercial scale. The next step will be a commercial-scale demonstration in Japan, supported by Australian coal industry. If everything goes to plan, the technology could be commercially available by the end end of this decade.

Unique challenges

These are just three examples of many. Each technology faces its own unique technical and commercial challenges. Not everything will work, but neither will all of these attempts fail. By focusing on a mix of different technologies and approaches, I have no doubt that we will see several new technologies emerge that will help us not only to meet the growing energy needs of humankind, but also mitigate its negative environmental impacts.

New cost-competitive, low-emission technologies will be vital if Australia wants to continue to export fossil fuels. It is therefore in our interest to continue to collaborate with the world so that we can responsibly use these resources.

Frankly, our responsibility does not stop at the harbour gate.

This article was originally published on The Conversation.
Read the original article.


Energy in a flash – what can we do with lightning?

Lightning is one of the scariest forms of energy in nature. What Halloween movie isn’t complete without a sudden thunderous bolt from the heavens right when the bad guy emerges from the shadows?

But lightning isn’t all just theatrics. It also contains a lot of power which, if it could be harnessed, could be of great use. This week’s dramatic electrical storms in Melbourne and Adelaide (storm photo gallery, ABC News) got us thinking… if we could capture lightning, what would we do with it?

*cue maniacal laugh*

In the 1931 film Frankenstein, the eponymous scientist used lightning-like bolts of electricity to create a monster.  In the 1990’s film Back to the Future, Doc used lightning to power his DeLorean to travel in time.

While it is fair to say we’re not quite ready to raise the dead or travel in time, using lightning to power our homes – or even a simple appliance like a toaster – could one day be a possibility.

Tall buildings like The Sydney Tower are regularly hit by lightning. According to recent reports, a million volts can charge through the Sydney Tower’s metal frame countless times per storm. Depending on which reports you read, there are about 500 megajoules in the average bolt.  This could easily power a 1000 watt two-slice toaster for over a year.

storm

Capturing the energy in a lightning bolt has been tried but with limited success. Other ideas have included conducting electricity using rods, or using the energy to heat water which could then be used to generate electricity. This is similar to solar thermal technologies which use the sun to heat water and then generate electricity.

For now, we’d say you’d be mad to try and power your toaster with lightning (unless you like it really burnt); but if we can find an efficient way to capture, store and distribute this energy, then one day it may form a small part of our energy mix.

Learn more about how we’re already harnessing nature’s power to produce energy with supercritical steam.


Shale gas, coal seam gas… what’s the difference?

By Tsuey Cham

A few weeks ago we took a look at coal seam gas (CSG) and the hydraulic fracturing (‘fraccing’) process used in its extraction. You may have also heard of shale gas, another type of natural gas found deep underground.

So what exactly makes them different?

In terms of their gas content they’re really quite similar, with both made up predominantly of methane – the type of gas used in homes for cooking and heating.

However, when it comes to extraction and production CSG and shale gas can be quite different. For example, CSG can be found up to about 1000 meters underground, whereas shale gas is found much deeper, usually 1500 to 4000 meters below the surface.

In Australia, hydraulic fracturing – a technique that increases the rate of gas flow for extraction – is used in CSG production 20-40% of the time, whereas in shale gas production it’s used every time.

Another interesting difference is that the process used to extract CSG produces more water than it uses – so there are large quantities of water produced as a by-product. Conversely, for shale gas, the extraction process uses more water than it produces.

Watch our latest short animation to find out more about shale gas, how it’s extracted and some of the potential environmental challenges involved in its production:

If you missed the animation on CSG extraction, watch it here.

You can also find out more from our fact sheets on CSG, shale gas and hydraulic fracturing in coal seams.


Four ways to lose weight and feel ‘electric’ this summer

As the mercury rises and our focus turns to hitting the gym and shedding those cuddly winter kilos, we thought we’d take a look at a few ways we could be making our workouts really count.

While the idea of working up a sweat and electricity might sound like a recipe for disaster, you’d be surprised how people and businesses are using sport and exercise to create electricity – with a conscience.

Giving light to rural communities


A company in the US has created a soccer balled called Soccket which can generate three hours of light with just thirty minutes of play. The ball is being used in rural off-grid areas of Mexico. Soccket stores the kinetic energy built up while you play using a pendulum-like mechanism.

Creating greener stadiums
At the Homes Stadium in Kobe City, Japan, the floorplan has been designed to harness vibrations made by cheering fans to create electricity. The electricity generates is fed back into the stadium’s power supply. The more fans cheer the less power the stadium needs to take from the ‘grid’.

Building safe places for kids to play


Soccer superhero Pele recently teamed up with global energy company Shell to launch a new type of pitch in a Rio. It is made from tiles which capture kinetic energy created by the movement of the players. The light is being used to power the pitch at night, resulting in a safe and secure community space.

Keeping your gym green
A gym in the UK made history by becoming the first self-powered gym using the energy of bikes, cross trainers and ‘vario’ machines to power its lights. Each machine feeds around 100w per hour back into the gym’s power supply. Treadmills also generate enough energy to power their own information screens.

And for those of us who may not be able to book a round the world trip purely for exercise purposes, why not try signing up for our new Total Wellbeing Diet online trial? Visit the website for more information and to sign up.

 


Tell me s’more: Five alternate ways to charge your mobile phone

In 1973 when Motorola engineer Martin Cooper created the first mobile phone prototype it weighed around 1.1 kilos (iPhone 6 weighs 129 grams) and had enough power for 20 minutes of talk time before requiring a ten-hour recharge. But back in the day that wasn’t an issue because most people weren’t strong enough to keep the brick-like handset hoisted to their ear for much longer.

Today, the problem we face is not developing forearms of steel to handle our phones, but how to keep them powered up with so many apps ticking away in the background. It turns out it is easier than you think. Forgotten your charger? Never fear. Chuck on a t-shirt, fire up the camp stove or grab your suitcase.

Roast some marshmallows
Ahhh, there’s nothing quite like the great outdoors. The hours of serenity provide the perfect time for quiet reflection as you feel yourself become at one with nature. But wouldn’t it be better if you’re phone wasn’t dead and you could share your favourite s’more recipes on Facebook? Now you can, thanks to a camping stove that converts heat from the flames into electricity.

Turn up the volume
A few years ago music lovers at the Glastonbury festival in the UK got to try out a new t-shirt that powered up their mobile phones while they pulled their moves. Made of a special material called piezoelectric film, the t-shirt turns vibrations from the music into an electrical charge.

Tee off like Tiger
Finally, golfers can be rewarded for playing poorly. Fitted to the handgrip of the club, the smart device harnesses the kinetic energy generated by the golfer repeatedly swinging the club. Depending on how good your game is, you could generate up to two hours of charge.

Run like Forrest
Keeping on the kinetic energy theme, so-called green gyms are using the energy burnt off by gym users to generate electricity. One gym in Berlin has installed special plug-ins to the machines that allow people to charge their phones with the energy they produce while working out.

Pack your suitcase
Designer Jung Inyoung has come up with the concept of a rolling suitcase that provides power to devices using kinetic energy. There are two gears on the bag’s wheels that collect energy as you stroll around the airport. You can plug your phone into the suitcase to charge it.

We have been working on new battery technologies for a number of years, including flexible batteries which can be integrated into fabrics and clothing. Read more about our wearable electronics work.


Taking a measured approach to CSG

CSIRO through the Gas Industry Social and Environmental Research Alliance (GISERA) is undertaking a comprehensive study of methane seeps in the Surat basin.

By Tsuey Cham

Our scientists are taking to the sky above the Surat basin in south-west Queensland to answer a big question – is coal seam gas (CSG) green?

Not literally green, of course: CSG is invisible to the naked eye. What we’re actually looking to determine is the CSG industry’s greenhouse gas footprint. The industry is set to increase production in Australia in coming years, so it’s important to be able to adequately monitor current and future CSG developments and provide information that will help limit any potential environmental impact.

One way to determine the CSG industry’s greenhouse gas footprint is by measuring methane seeps. Methane seeps occur naturally from underground, as well as in soils, swamps and rivers. Another key component is measuring fugitive methane – methane that leaks from CSG well heads, pipes and other infrastructure.  Initial findings show that fugitive methane emissions are lower in Australia than the US.

In south-west Queensland, the Surat basin is where CSG activities are in full swing, with its network of production wells, pipelines, access tracks and warning signs. With CSG development in the basin increasing over the next few years, we are trying to establish the amount – and source – of methane emissions now,  so that in the future we can determine what is attributable to natural sources, and what is attributable to CSG activity.

Taking CSG measurements.

A four wheel drive-mounted methane detector, with onlookers.

To do this, our scientist are using airborne sensors aboard helicopters to measure natural methane emissions. With this data in hand, they then calibrate and validate it with land-based sensors to identify how much methane naturally occurs from the ground.

Findings from this research will provide a methane emissions data set that can be used to compare against changes in methane emission as CSG production increases; and will add to the bigger picture of assessing the industry’s whole-of-life-cycle greenhouse gas footprint.

For more information, visit GISERA or our website.


Holy sunbeams batman: Five places you never thought you’d see a solar panel

Garden gnome

Gnome-on-a-log… of course.

As the price of producing solar panels starts to fall and people are finding smarter, thinner and more flexible materials to create them, it seems like no place is safe from these sun sucking devices. Even the humble garden gnome is getting in on the act. To celebrate the arrival of spring and the advent of slightly warmer weather, we thought we’d share some of the more unusual places we’ve seen solar panels popping up.

Batmobile lawn mowers
If your dream is to own a batmobile, but you can’t afford it, then this might be the next best thing – a solar powered mower by Husqvarna. But at around $2k it might be cheaper to buy a goat.

Bikinis
If checking Facebook at the beach is that important to you a US-based designer is intricately stitching panels together in the form of a bikini so you can charge your iPhone on the beach.

Sun-powered cinema
In the UK, The Sol Cinema is a unique mobile cinema powered by the sun. It accommodates eight people and features a library of short videos, many with environment themes.

Catwalks
Last year the Chanel runway show at Paris Fashion Week featured a catwalk that looked like it was made from solar panels. Unfortunately it was more power dressing that power generating as the panels were fake, but it looked fancy.

 Magazine ads
Nivea broke new ground for advertisers last year when they launched a concept video featuring a solar panel in a magazine which you could use to charge your phone.

CSIRO is also working on new applications for solar panels and recently launched a printer that can print cells the size of an A3 sheet of paper. Read about some of the potential applications of this technology on the ABC news website.

 


Follow

Get every new post delivered to your Inbox.

Join 4,242 other followers