The future of biodiversity is in our hands

Australia’s Biodiversity series – Part 12: Conclusions

When talking about the fate of biodiversity it’s easy to get bogged down in doom and gloom—we know that it’s in decline, that human populations and demand for resources continue to grow, and therefore the pressure we’re putting on other species is increasing, and that big gaps remain in our understanding of the biodiversity that’s out there.

Australia is developing a vast capacity for monitoring the natural environment through the Terrestrial Ecosystem Research Network. Image: Gregory Heath.

Australia is developing a vast capacity for monitoring the natural environment through the Terrestrial Ecosystem Research Network. Image: Gregory Heath.

But there are solutions. Since the concept of biodiversity first emerged in the 1980s, the science dedicated to understanding our natural systems has come a long way. With the emergence of new technologies it has become possible to find out far more about the species we share the planet with, and we can do it with far more efficiency.

It’s these big challenges and scientific solutions that we focused on in our book, Biodiversity: Science and Solutions for Australia. In the twelfth and final video in our Australia’s Biodiversity series, the book’s editors, Dr Steve Morton, Dr Mark Lonsdale and Dr Andy Sheppard, engage in a panel discussion about the future of biodiversity science in Australia:

You might like to read the concluding chapter of CSIRO’s Biodiversity Book to find out more about the scientific solutions that could help us address the big threats to Australia’s biodiversity.

And if you’ve been inspired to get more involved in the management of our biodiversity, there’s a lot you can do—even from your computer. Visit the Atlas of Living Australia to find out about volunteer opportunities.

You can find all the videos from our biodiversity series on our YouTube channel.


Bees backpacking in Brazil

Bee with a backpack...of the sensor variety.

Bee with a backpack…of the sensor variety.

By Emma Pyers

How do bees in the Amazon jungle compare to those in Tasmania? They get up earlier, for a start.

Paulo de Souza and his team have been tracking bees in the two regions using tiny backpack sensors as part of our Swarm Sensing Project to gather biological and ecological data to improve honey bee health.

The tiny backpacks are just a quarter of a centimetre square and are fitted to the back of the bees.

“We have already attached the micro-sensors to the backs of thousands of bees in Tasmania and the Amazon and we’re using the same surveillance technologies to monitor what each bee is doing, giving us a new view on bees and how they interact with their environment,” Paulo said.

Graph: Daily distribution of bees in Brazil and Tasmania

Daily distribution of bees in Brazil and Tasmania (click for large version)

“Once we have captured this information, we’ll be able to model it. This will help us understand how to manage our landscapes in order to benefit insects like bees, as they play such a key role in our lives. For example, one third of the food we eat relies on bees for pollination, that’s a pretty generous free service these humble insects provide us!”

Early modelling has shown one notable difference between the bees in Tasmania and those in the Amazon; Amazon bees are up and about very early in the morning while Tassie bees prefer to wait until the day warms up before they leave the hive.

But finding out what time bees get out of bed is only a tiny part of what the research can show us. For example the research will also look at the impacts of agricultural pesticides on honey bees by monitoring insects that feed at sites with trace amounts of commonly used chemicals.


A global buzz in micro sensing

We’re working with the Vale Institute of Technology in Rio de Janeiro, Brazil, on micro-sensory technology and systems.

Working with researchers across the globe has its unique challenges as well as its rewards, and it’s the physical challenges that have been the most interesting.

“As the Africanised honey bees were very aggressive, the hive was placed in an isolated area away from housing and domestic animals – and isolation meant working in densely vegetated areas,” Paulo explained.  “We had to clear a path to the hive and we wore fully protective bee clothing which was tough given the extreme humidity and heat.”

The Brazilian media got a taste of what it was like to work in these conditions, when they suited up to interview Paulo and our colleagues from the Vale Institute of Technology about their work.

Pressure from the press

Pressure from the press

The collapse in global populations

Bee health is important globally however, honey bee populations around the world are in danger.

Colony Collapse Disorder (CCD) – a phenomenon in which worker bees from a colony abruptly disappear – and Varroa mite are two major problems facing bee populations globally. While these two problems haven’t appeared in Australia, there is a very real risk.  And what happens if it does? Catastrophe!

Check out this video where Peter Norris, Tasmanian beekeeper, describes his first hand experience with CCD while working in the United Kingdom.

So it’s a good thing our scientists, and their colleagues in Tassie and Brazil, are on the case.

To learn more about how we’re trying to save honey bees around the world tune into ABC Catalyst at 8pm tonight.

CSIRO’s Swarm Sensing Project is a partnership with the University of Tasmania and receives funding from Vale, a Global mining company.


Mining and biodiversity: are they getting along?

Australia’s Biodiversity series – Part 11: Mining

Dolphin poking its head out of the water in the foreground and a ship in the background

Dolphin conservation is carried out to offset impacts of infrastructure development in Darwin Harbour. Image: Carol Palmer

Many people worry about the environmental impacts of mining, but as a society we have a growing demand for its products. Most Australian’s consider it worthwhile and a valuable industry for the nation’s prosperity, as our recent national survey indicates.

The direct impacts of mining on biodiversity are relatively limited compared with other major land uses—less than 1% of the Australian land area is used for mining, while 62%  is used for agriculture for example.

The greatest threats to biodiversity from mining come from the cumulative impacts of the infrastructure required for mining operations—roads, ports, pipelines, shipping etc. Science can help to assess any potential implications for biodiversity from mining development so that impacts can be better managed and rehabilitation and offsetting efforts can be more effective.

In the eleventh video of our Australia’s Biodiversity series, Dr Alan Andersen talks about the main impacts of mining on biodiversity and how these can be appropriately managed through processes like strategic regional assessments, use of bioindicators in rehabilitation, and biodiversity offsets:

To find out more about mining and biodiversity in Australia, you might like to read the corresponding chapter of CSIRO’s Biodiversity Book.

Last week’s video looked at the biodiversity in our inland water systems and how our approach to water management impacts ecosystem health. You can review it and the other videos in the series on our YouTube channel.


Extracting the facts on Australian attitudes to mining

Mine with dump truck

A dump truck drives through an open cut mine. Image by CSIRO Publishing

It’s no secret that mining is important to Australia, but that doesn’t necessarily make it popular with society at large.

We wanted to have a better understanding of what Australians think about mining, so in 2013/14 we conducted an online survey of 5,121 Australians.

The survey results have now been published as Australian attitudes toward mining: Citizen Survey – 2014 Results

Surveying community attitudes helps us to understand the impacts and benefits of mining, and how the relationship between the mining industry, government and society affects what Australia’s citizens think about it, and how much they accept the mining industry. It gives us insight into what needs to happen before mining has a ‘social licence to operate’ in Australia.

Importance of mining to Australia

Is mining important to Australia?

We’ve gone beyond basic descriptions of attitudes towards the extractive industries, and looked at the relationship between mining and society in a more constructive and sophisticated way.

We wanted to know what goes into influencing trust in the mining industries, and the government, over mining developments. What, for example, is the relationship between good governance and social acceptance of the extractive industries? What are the key issues for a productive dialogue between the extractive industries and other stakeholders?

Acceptance of mining

How much do Australian accept the mining industries?

Some of the important findings from the survey are that:

  • People view mining as central and significant to Australia’s economy and standard of living. They see it as a ‘necessary’ industry for Australia, which is important to Australia’s future prosperity
  • Australians generally understand what it means to have a significant mining industry. Overall, they think that at present the benefits of mining outweigh its impacts.
  • The more the benefits of mining outweigh the costs, the higher the level of acceptance. If this balance is perceived to move toward the negative impacts of mining, acceptance of mining will be eroded.
  • Australians trust and accept the industry more when they believe the industry is listening to them and will respond to their concerns, when benefits from mining are shared equitably, and when the legislative and regulatory frameworks in place make them confident that industry will do the right thing.
  • Governments and industry need to work with communities to earn and maintain the ‘social licence to operate’ and develop effective, constructive, mutually beneficial relationships.

Global carbon report: emissions will hit new heights in 2014

By Pep Canadell, CSIRO and Michael Raupach, Australian National University

As heads of state gather in New York for tomorrow’s United Nations climate summit, a new report on the state of the world’s carbon budget tells them that greenhouse emissions hit a new record last year, and are still growing.

The Global Carbon Project has released its annual report card on the global and national trends in carbon dioxide (CO2) emissions.

It shows that global emissions from burning fossil fuels and cement production reached a new record of 36 billion tonnes of CO2 in 2013, and are predicted to grow by a further 2.5% in 2014, bringing the total CO2 emissions from all sources to more than 40 billion tonnes. This is about 65% more fossil-fuel emission than in 1990, when international negotiations to reduce emissions to address climate change began.

Meanwhile, deforestation now accounts for just 8% of total emissions, a fraction that has been declining for several decades.

Global emissions chart

Global carbon dioxide emissions from fossil fuel and cement production.
Source: CDIAC, Friedlingstein et al. 2014, Global Carbon Project 2014

The growth of global emissions since 2009 has been slower than in the prior period of 2000-08. However, projections based on forecast growth in global gross domestic product (GDP) and continuance of improving trends in carbon intensity (emissions per unit of GDP) suggest a continuation of rapid emissions growth over the coming five years.

Global emissions continue to track the most carbon-intensive range among more than a thousand scenarios developed by the Intergovernmental Panel on Climate Change (IPCC). If continued, this situation would lead to global average temperatures between 3.2C and 5.4C above pre-industrial levels by 2100.

Graph of possible IPCC scenarios

Global carbon dioxide emissions from human activity, compared to four different possible futures as depicted in IPCC scenarios.
Fuss et al. 2014

There have been other striking changes in emissions profiles since climate negotiations began. In 1990, about two-thirds of CO2 emissions came from developed countries including the United States, Japan, Russia and the European Union (EU) nations. Today, only one-third of world emissions are from these countries; the rest come from the emerging economies and less-developed countries that account for 80% of the global population, suggesting a large potential further emissions growth.

Continuation of current trends over the next five years alone will lead to a new world order on greenhouse gas emissions, with China emitting as much as the United States, Europe and India together.

Country emission profiles

There are several ways to explore countries’ respective contributions to climate change. These include current emissions, per capita emissions, and cumulative emissions since the industrial revolution.

Cumulative emissions

Carbon dioxide emissions from the combustion of fossil fuels and cement production for five regions. Cumulative emissions, production emissions (emissions generated in the region where goods and services are produced), consumption emissions (emissions generated in the region where goods and services are consumed), population, and GDP. 2012 is the most recent year for which all data are available.
CDIAC, Global Carbon Project 2014

The largest emitters in 2013 were China, the United States, the 28 EU countries (considered as a single bloc), and India. Together, they account for 58% of global emissions and 80% of the emissions growth in 2013 (with the majority the growth coming from China, whereas the EU cut its emissions overall).

Here’s how the major emitters fared in 2013.

China

Emissions grew at 4.2%, the lowest level since the 2008 global financial crisis, because of weaker economic growth and improvements in the carbon intensity of the economy. Per capita emissions in China (7.2 tonnes of CO2 per person) overtook those in Europe (6.8 tonnes per person).

A large part of China’s high per capita emissions is due to industries that provide services and products to the developed world, not for China’s domestic use. China’s cumulative emissions are still only 11% of the total since pre-industrial times.

United States

Emissions increased by 2.9% because of a rebound in coal consumption, reversing a declining trend in emissions since 2008. Emissions are projected to remain steady until 2019 in the absence of more stringent climate policies, with improvements in the energy and carbon intensity of the economy being offset by growth in GDP and population. The United States remains the biggest contributor of cumulative emissions with 26% of the total.

European Union

Emissions fell by 1.8% on the back of a weak economy, although reductions in some countries were offset by a return to coal led by Poland, Germany and Finland. However, the long-term decrease in EU emissions does not factor in the emissions linked to imported goods and services. When accounting for these “consumption” emissions, EU emissions have merely stabilised, rather than decreased.

India

Emissions grew by 5.1%, driven by robust economic growth and an increase in the carbon intensity of the economy. Per capita emissions were still well below the global average, at 1.9 tonnes of CO2 per person, although India’s total emissions are projected to overtake those in the EU by 2019 (albeit for a population nearly three times as large). Cumulative emissions account for only 3% of the total.

Australia

Emissions from fossil fuels declined in 2013, largely driven by a 5% decline of emissions in the electricity sector over the previous year (as shown by the Australian National Greenhouse Gas Accounts). Fossil fuel emissions per person remain high at 14.6 tonnes of CO2.

National fossil fuel emissions

National carbon dioxide emissions from fossil fuels.
Source: CDIAC, Friedlingstein et al. 2014, Le Quere et al. 2014

Per capita emissions fossil fuels

Per capita carbon dioxide emissions from fossil fuels for the top emitting nations.
Source: CDIAC, Global Carbon Project 2014

Is it too late to tame the climate?

Our estimates (see here and here) show that, at current emissions levels, average global warming will hit 2C in about 30 years.

Despite this apparently imminent event, economic models can still come up with scenarios in which global warming is kept within 2C by 2100, while both population and per capita wealth continue to grow. Are these models playing tricks on us?

Most models invoke two things that will be crucial to stabilising the climate at safer levels. The first is immediate global action to develop carbon markets, with prices rapidly growing to over US$100 per tonne of CO2.

The second is the deployment of “negative emissions” technologies during the second half of this century, which will be needed to mop up the overshoot of emissions between now and mid-century. This will involve removing CO2 from the atmosphere and storing it in safe places such as saline aquifers.

These technologies are largely unavailable at present. The most likely candidate is the production of bioenergy with carbon capture and storage, a combination of existing technologies with high costs and with environmental and socio-economic implications that are untested at the required scales.

There are no easy pathways to climate stabilization, and certainly no magic bullets. It is still open to us to choose whether we halt our CO2 emissions completely this century – as required for a safe, stable climate – or try instead to adapt to significantly greater impacts of climate change.

What we have no choice about is the fact that the longer emissions continue to grow at rates of 2% per year or more, the harder it will be to tame our climate.

The Conversation

Pep Canadell received support from the Australian Climate Change Science Program.

Michael Raupach has previously received funding from the Australian Climate Change Science Program, but does not do so now.

This article was originally published on The Conversation.
Read the original article.


Queensland survey reveals lukewarm view of coal seam gas

By Andrea Walton, CSIRO; Rod McCrea, CSIRO, and Rosemary Leonard, CSIRO

Coal seam gas plant in Chinchilla Qld.

Residents in Queensland’s Western Downs region have mixed feelings towards coal seam gas (CSG) development taking place in their midst, according to our CSIRO survey.

More than two-thirds of locals described themselves as “tolerating” or “accepting” CSG, while only 22% had openly positive attitudes. However, just 9% of survey respondents rejected the industry outright.

Around half of the surveyed residents felt that their community was struggling to adapt to changes. Residents were also less optimistic about the future, with many predicting a decline in community wellbeing over the coming years.

Attitudes to coal seam gas

We conducted a representative survey of 400 people living in and around the towns of Chinchilla, Dalby, Miles and Tara, all of which are experiencing varying stages of CSG development. We asked people about their attitudes to CSG, as well as their opinions on the wellbeing and resilience of their communities in the face of both opportunities and challenges associated with rapid CSG development.

Opportunities include increased employment and business, new services and new facilities, and a more vibrant community, whereas the challenges include water and land management, traffic conditions and safety, and affordable housing.

There were mixed feelings towards CSG development in the region, with almost 70% saying they either “tolerate” or “accept” it. A minority (22%) “approve” or “embrace” it, while a smaller minority (9%) of respondents “reject” it.

Although these results indicate that attitudes to CSG are not strongly polarised in these communities, it is clear that some community members are strongly opposed to it.

CSG attitudesQueensland

Attitudes towards coal seam gas in Western Downs communities
CSIRO

In response to questions around how residents felt their community was dealing with CSG development in their region, about 50% felt that their community was struggling to adapt to the changes – either “resisting”, “not coping”, or “only just coping” with CSG development.

Queensland perceptions of CSG

Perceptions of community responses to coal seam gas development in the area
CSIRO

Other results show that more positive attitudes to CSG are associated with community perceptions of being resilient, the environment being managed well for the future, good employment and business opportunities, and resource companies, government, and business working effectively with residents to deal with changes.

Differences across the region

Residents in Chinchilla see their community as adapting to changes more effectively than people in the other areas we surveyed. This reflects a perception that Chinchilla has better employment and business opportunities than places like Dalby and Tara, where respondents were more likely to find these opportunities unsatisfactory.

People who lived out of town reported lower levels of social interaction, services and facilities, employment and business opportunities, and overall community wellbeing than town residents. Although this may reflect general differences between rural and town life, those living out of town also had less favourable attitudes toward CSG (see the second chart above) and lower expectations of future community wellbeing .

Nevertheless, the overall average of community wellbeing across our whole survey was rated at 3.8 out of 5, which is robust and higher than many other Queensland regions when compared to similar items surveyed in a previous study.

Improving the situation

Our survey offers a snapshot of how people in Queensland’s Western Downs are feeling about the changes happening to their communities, and could form a basis for future strategies to support them.

The results suggest that investments made in wellbeing and resilience could lead to a more optimistic outlook for the future. In particular, three key areas that cause community dissatisfaction are road infrastructure, community participation in decision-making, and long-term environmental management.

However, we also found that while improving these things would benefit communities, these are not the most important factors for overall wellbeing. The things rated as most important are: services and facilities, community spirit and cohesion, a socially interactive community, personal safety, and environmental quality.

More optimistic outlooks for community wellbeing are associated with community resilience; especially good working relationships between groups, planning and leadership, supporting volunteers, and having access to information. Targeted investments are important but need to be combined with good collaboration between state and local governments, CSG companies, and local communities to enhance future community wellbeing.

Given that Queensland is more advanced than any other state in terms of CSG production, our study might also offer lessons for other regions of Australia that are facing the issue of CSG development, either now or in the future.

The Conversation

Andrea Walton is affiliated with CSIRO. She receives funding from GISERA. The Community Functioning and Wellbeing Project was funded by the Gas Industry Social and Environmental Research Alliance (GISERA). GISERA is a collaborative vehicle established to undertake publicly-reported independent research addressing the socio-economic and environmental impacts of Australia’s natural gas industries. The governance structure for GISERA is designed to provide for and protect research independence and transparency of funded research.

Rod McCrea receives funding from the Gas Industry Social and Environmental Research Alliance (GISERA). GISERA is a collaborative vehicle established to undertake publicly-reported independent research addressing the socio-economic and environmental impacts of Australia’s natural gas industries. The governance structure for GISERA is designed to provide for and protect research independence and transparency of funded research.

Rosemary Leonard receives funding from GISERA.The Community Functioning and Wellbeing Project was funded by the Gas Industry Social and Environmental Research Alliance (GISERA). GISERA is a collaborative vehicle established to undertake publicly-reported independent research addressing the socio-economic and environmental impacts of Australia’s natural gas industries. The governance structure for GISERA is designed to provide for and protect research independence and transparency of funded research. See http://www.gisera.org.au for more information about GISERA’s governance structure, funded projects, and research findings. She is a member of The Greens political party in Western Australia.

This article was originally published on The Conversation.
Read the original article.


Water: we need it to live, and so does our wildlife

Australia’s Biodiversity series – Part 10: Inland waters

Even though it is one of the world’s most arid continents, Australia’s inland waters support a rich diversity of life.

Rivers, streams, wetlands, floodplains, lakes, underground aquifers—we’ve got them all and they all support native species.

A large brown and yellow frog

The New Holland water-holding frog. 94% of our frog species are found only in certain ecosystems – the highest rate of endemism among Australia’s vertebrate species. Image: Danial Stratford.

Biodiversity is enhanced by the wide variation in rainfall across the continent and the change in climate from the tropical north to the temperate southern regions. Life in Australia’s inland water ecosystems has had to adapt to the ‘boom and bust’ that comes from periods of both extreme dry and extreme wet.

Human development has had a dramatic impact on these ecosystems, particularly in the Murray Darling Basin and other areas in the southeast, as we use water for our cities and towns and for irrigated agriculture. These water uses are obviously of great benefit to the Australian population but the use of the water and the infrastructure associated with it can disrupt the natural flows of water and nutrients through inland water ecosystems, which native plants and animals depend on.

In the tenth video of our Australia’s Biodiversity series, Dr Carmel Pollino talks about Australia’s unique inland water ecosystems and how water can best be managed for the benefit of biodiversity and our communities:

To find out more about the biodiversity in our inland water ecosystems, you might like to read the corresponding chapter of CSIRO’s Biodiversity Book.

Last week’s video looked at the new ways science is attempting to understand the unknown biodiversity in our oceans. You can review it and the other videos in the series on our YouTube channel.


Follow

Get every new post delivered to your Inbox.

Join 3,412 other followers