Pluto pointers: nine bite-size facts about the dwarf planet

New Horizons’ flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

New Horizons flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

By Adam Knight

We’re playing a vital role in NASA’s New Horizons mission, the first ever attempt to visit Pluto. Learn more about this historic exploration, and our other astronomical feats, at #CSIROSpace.

It’s more than five billion kilometres away, is smaller than our moon and it’s not even a planet. So why have we spent nine and a half years hurling a probe to the far reaches of the Solar System, just to catch a brief glimpse of a tiny ice dwarf known as Pluto?

Well for one, we know hardly anything about the composition of the dwarf planet and its moons. Learning more about how they formed will help us better understand the origins of our solar system.

But who knows what other secrets might be unlocked by the New Horizons spacecraft and its suite of scientific instruments: what ‘unknown unknowns’ we might discover when the data starts streaming on July 14?

Before the teams at NASA and John Hopkins University sink their teeth into this bounty of information, we thought we should take stock of some of the things we DO know about this odd chunk of ice and rock that sits on outer edge of the solar system.

1. Believed, and then seen: Pluto’s location was originally predicted by Percival Lowell in 1915, before being officially discovered on February 18, 1930 by Clyde Tombaugh at the Lowell Observatory in Arizona, USA.

2. When in Rome: Pluto was named by an 11 year old girl, Venetia Burney, after the Roman God of the underworld. Thankfully Pluto was chosen over the other options like Zymal, Constance and Cronus.

3. Out of its world: A list about Pluto would be incomplete without talking about the loss of its planet-hood status. In 2006 the International Astronomy Union finalised the definition of a planet, sadly Pluto was unable meet the criteria. Because Pluto is ‘unable to clear the neighbourhood around its orbit’ it was downgraded to the first ever dwarf planet.

4. You thought dial-up was bad: Even at the speed of light it will take 4.6 hours for our team at the Canberra Deep Space Communication Complex (CDSCC) to receive data from New Horizons.

5. Pluto’s pups: There are five moons in orbit around Pluto. Charon, the largest was discovered back in 1978. Hydra, Nix, Kerberos and Styx were all discovered between 2005 and 2012.

6. In’n’Out: At its closest point to the Sun or its ‘perihelion’ Pluto is 4.4 billion kilometres away. When it reaches its ‘aphelion’ or the point where Pluto is furthest from the Sun, the ice dwarf is 7.3 billion kilometres away from the warmth of our star. Because of this orbit, Pluto is periodically closer to the Sun than Neptune.

Just how dim is the sunlight on Pluto, some three billion miles away? This artist's concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn't as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

Just how dim is the sunlight on Pluto, some three billion miles away? This artist’s concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn’t as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

7. Long days, longer years: The length of a Pluto day is equal to 6 days, 9 hours and 17 minutes, compared to Earth’s 24 hours. It takes Pluto a whopping 247.9 Earth-years to complete one orbit of the Sun.

8. Bring a jacket: Temperatures on the planet range from a balmy -210C to -235C.

9. A rock and a cold place: Pluto is made up of one third frozen water with the remaining two thirds consisting of rock.

The New Horizons spacecraft is due to pass by Pluto on the 14th July, and our team at the CDSCC are ready to receive the first ever images and video as they’re sent through. NASA will be making much of it available soon after, so stay tuned as we will be sharing these images on our blog, Facebook, Twitter and Instagram.


We’re kneading our way to bread that lowers cholesterol

That's how we (bread) roll: a cholesterol absorbing bread could have incredible health benefits for the community

That’s how we (bread) roll: a cholesterol absorbing bread could have incredible health benefits for the community

If we were to tell you that you could lower your cholesterol and your risk of heart disease – by eating bread, would you be up for it?

It sounds too good to be true, doesn’t it? But maybe it isn’t. We’re trying to make it possible using gene technology and plant breeding techniques to develop new superior wheat varieties.

Why is cholesterol such an issue? Cholesterol is an essential type of fat that is carried in the blood. It’s vital to healthy cell function and hormone regulation, among other things, but too much of it in our bloodstream can be a bad thing – damaging our arteries and leading to heart disease. In fact, the World Health Organisation has estimated that raised cholesterol is estimated to cause 2.6 million deaths annually.

It’s no wonder our scientists have been researching foods to help lower the prevalence of cholesterol related illnesses in the community. And it looks like we’re on to something.

We know that barley and oat grains contain high levels of a soluble fibre called betaglucan (1-3 ,1-4 betaglucan), which can reduce cholesterol reabsorption in the gut. This leads to healthier blood cholesterol levels, lowering the risk of heart disease. Unfortunately, wheat (which is one of the most commonly consumed grains in the world) has low levels of betaglucan and it has a slightly different structure to the oat and barley betaglucan, which makes it insoluble.

Betaglucan is made by an enzyme that sits in the membrane at the surface of the plant cell. This enzyme links activated glucose sugars from within the cell and pushes the growing betaglucan polymer chain through a pore in the membrane into the cell wall surrounding the cell.

Betaglucan is made by an enzyme that sits in the membrane at the surface of the plant cell. This enzyme links activated glucose sugars from within the cell and pushes the growing betaglucan polymer chain through a pore in the membrane into the cell wall surrounding the cell. Click on the image for an animated version of the diagram, by Lisa Jobling.

So at the moment, it’s not possible to get cholesterol-lowering benefits from breads unless they have added barley or oat flour. This affects the taste and texture of the bread, which is why people generally prefer bread that’s made wholly from wheat flour. What we want is a bread that maximises the health benefits without sacrificing the flavour and texture that consumers want.

We now know why betaglucan in barley and oats is soluble but in wheat it’s not – and it’s to do with tiny differences between the enzymes that work in barley and oats compared with the one working in wheat to create the betaglucan. In ground breaking research just published, we’ve discovered that just one amino acid (the building blocks of enzymes) difference in the enzyme that forms betaglucan can change the structure and make it more soluble. By changing that one amino acid in the wheat enzyme we should be able to make wheat with more soluble betaglucan and cholesterol lowering properties.

In a proof of principle experiment, we used gene technology to take the gene that makes betaglucan in oats and expressed it in wheat grain. This showed we can simultaneously increase the amount of betaglucan and change its structure making it as soluble as barley betaglucan. We did this in trials using genetically modified plants, a great tool to gain knowledge. We’re using them as a small-scale means to test what’s possible and understand exactly what we need to look for when we get to the next stage which doesn’t involve genetic modification.

The trial wheat plants were grown in a controlled field trial (approved by the Office of the Gene Technology Regulator) to get enough grain to evaluate the suitability for bread-making and potential health benefits such as lowering the level of cholesterol reabsorption. If this is successful, we plan to use conventional breeding techniques to develop a wheat for public consumption. This is more difficult and will take a while longer but we think it’s possible.

Our field of dreams

The controlled wheat trial: This is where we are testing how the modified wheat grows

If you’d like to know more about this research and the technical bits check out our webpage or be daring and go straight to the research on Science Advances.


Remote-I: connecting science and sight in remote communities

Medical service via email: an image of a patient's retina can be easily sent to an ophthalmologist.

Medical service via the net: an image of a patient’s retina, pictured here, can be easily sent to an ophthalmologist to review.

We can thank high speed internet for many things: the social media revolution, streaming services like Netflix and iView, and a never ending supply of cat videos on YouTube.

But it also has applications in the real world, providing connections to people and places that may otherwise miss out on services and technology that are otherwise taken for granted.

The perfect example of this? Remote-I: our new healthcare technology that uses satellite broadband to help prevent blindness in remote communities.

It’s a high-tech but simple solution to a widespread problem for Indigenous Australians, known as diabetic retinopathy, or DR.

DR, which can affect any diabetes sufferer, damages the small blood vessels in the light-sensitive tissue in the retina (nerve layer at the back of the eye) which leads to vision loss. According to a 2008 National Indigenous Eye Health Survey, around 1 in 16 Indigenous people have diabetes, and of these people with diabetes around one in three have DR. Diabetes was the cause of 13% of vision loss and 9% of blindness among Indigenous adults.

Not only does DR affect the Indigenous population at nearly four times the rate of the non-Indigenous population, it’s also estimated only one in five Indigenous people with diabetes has had an eye exam in the last year. DR can be avoided by having regular eye checks, however those in remote communities simply don’t have access to these services.

Patient’s retinal images and health data can be sent from a remote community health clinic to the desk of a city based ophthalmologist.

Patients’ retinal images and health data can be sent from a remote community health clinic to the desk of a city based ophthalmologist.

Enter Remote-I. Developed by Prof Yogi Kanagasingam and his team, the Remote-I platform works by capturing high-resolution images of a patient’s retina with a low-cost retinal camera, which are then uploaded over satellite broadband by a local health worker.

Then comes the really cool part: once the health worker uploads the patient’s image, an ophthalmologist can access it anywhere at any time. It takes about five minutes to read the images, create the report, and then send it back to the health worker.

The team recently trialed the technology in the Torres Strait Islands and southern Western Australia. As part of the trial, over 1,000 patients received a free eye screening appointment at a local community health centre.

The screening program identified 68 patients who were at high risk of going blind.

The technology also has the potential to benefit older Australians living in remote areas who may have trouble accessing medical facilities

According to Yogi, technologies like Remote-I can help close the gap in access to healthcare in remote and regional Australia.

“If we can pick up early changes and provide the appropriate intervention, we can actually prevent blindness,” says Yogi.

“After our successful trials, we’re really looking to see how we can work with governments and health care providers to continue the roll-out of this technology across other states and territories.

Yogi and his team are also conducting trials to further refine the Remote-I system with a National Health and Medical Research Council (NHMRC) development grant to create an algorithm that can automatically identify all the pathologies related to diabetic retinopathy, and send them for referral.

After achieving such successful results in Australia, we’ve also licensed Remote-I to a Silicon Valley spin-off TeleMedC, which plan to take the technology to the US and world market as part of its ‘EyeScan’ diagnostic solution.

Find out more about our work in Digital Health. 


PLUTO: T-20 Days and Counting

Nicholas Kachel:

The final countdown begins! New Horizons is on the home stretch for its ever-so-brief celestial encounter with Pluto, and it’s safe to say we’re getting a little excited. Read on to find out what the spacecraft will be doing once it reaches this distant world. And for more #CSIROSpace news, be sure to fly over to http://www.csiro.au/en/Research/Astronomy

Originally posted on Universe @ CSIRO:

Australia’s key role in NASA’s New Horizons mission

Historic Encounter: Artist's concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA Historic Encounter: Artist’s concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA

After a voyage of 3,443 days and travelling nearly 5 billion kilometres from home, NASA’s New Horizons spacecraft is now just 20 days away from its historic encounter with the distant world of Pluto.

The science team located at the Applied Physics Laboratory (APL) at the Johns Hopkins University in Baltimore, Maryland and the Southwest Research Institute (SwRI) in San Antonio, Texas have been dreaming of this moment since plans for the mission were first hatched back in 1989.

Key to the success of this mission are the powerful, yet ultra-sensitive communication dishes at the Canberra Deep Space Communication Complex – a part of the Deep Space Network (DSN) – one of three NASA tracking stations located in Australia, Spain and USA.

Listening for Whispers: Canberra Deep Space Communication Complex. Listening for Whispers: Canberra…

View original 899 more words


Eureka! A solid gold solution to make Archimedes proud

We've found a golden solution for gold extraction.

We’ve found a golden solution for environmentally friendly gold extraction.

By Roger Nicoll

‘Eureka!’ cried the Ancient Greek scholar Archimedes as he (allegedly) ran naked through the streets of Syracuse. He’d just discovered a method to prove the purity of gold by measuring its density, and was decidedly proud of his finding.

Thankfully, these days we favour blog posts to running naked through the streets when we make important new discoveries… but it doesn’t mean we can’t still give a good shout: 

‘Eureka! We’ve found a way to produce cyanide-free gold!’

We’ve been working with an American company, Barrick, at their Goldstrike plant in Nevada, to produce the first ever gold bar that doesn’t involve the use of cyanide extraction. Cyanide is, of course, highly toxic and a potential environmental hazard. The new process we’re so excited about uses a chemical called thioshulphate, which will greatly reduce the environmental risks and costs associated with gold production.

Thiosulphate has long been seen as a potential alternative to cyanide for liberating gold from ores, but it has proved difficult to master – until now. Thanks to the new process, which incorporates patented technology we’ve developed with Barrick, the company will be able to process and profit from four million tonnes of stockpiled ore that was uneconomic to process by traditional methods.

As part of the thiosulphate process at Goldstrike, gold-bearing ore is heated in large pressure chambers, or autoclaves. It’s then pumped as a thick slurry of ore, air, water and limestone into the new ‘resin-in-leach’ circuit that takes place inside large stainless steel tanks.

Within the tanks, the slurry interacts with thiosulphate and a fine, bead-like substance called resin that collects the gold. At full capacity, 13,400 tons of ore can be processed daily, with leaching taking place simultaneously in two sets of seven tanks.

Our very own minerals expert Danielle Hewitt had a hands-on role in developing and proving the CSIRO technology incorporated at the Goldstrike plant. But for security reasons, it was strictly hands-off the resulting gold bar.

Danielle Hewitt with the first  gold bar produced using the new process.

Danielle Hewitt with the first gold bar produced using the new process.

“This was a golden moment more than 20 years in the making, including three years working with Barrick to refine the commercial process,” said Danielle.

She said the new process will contribute an average of 350 to 450 thousand extra ounces of gold each year to the operation, allowing the large plant to keep operating.

The new technology could also have some benefits closer to home, with the potential to safely recover gold in Australia where cyanide would otherwise pose a significant environmental risk and environmental protection cost.

As with Archimedes, another gold standard solution.

For more about this and other innovations from our Mineral Resources Flagship see the latest issue of Resourceful.


Taking our solar technology to the land of the rising sun

Solar field with sun reflected in mirror

We have a sunny outlook when it comes to bringing our solar technology to the world. Our solar field in Newcastle, NSW, with sun reflected in mirror.

Did you know we’re exporting our solar technology to the world?

Fresh from setting a world record last year, our solar team continue to see great demand for our heliostat technology. We recently took this tech and our expertise to Cyprus to help the island nation with its transition to renewable energy, and now we are off to the ‘land of the rising sun’, Japan.

Mitsubishi Hitachi Power Systems (MHPS) are establishing a field of 150 heliostats in Yokohama, for running research projects using CSIRO-designed heliostats. MHPS recently received funding from the Japanese Ministry of the Environment for the purpose of reducing carbon dioxide emissions, and we are delighted that this global leader in energy has chosen our technology; it’s a great vote of confidence.

But it’s not all about success overseas, our solar tech is making a difference to the local car industry as well.

We’re not talking about solar powered vehicles (though we are a fan of solar cars, in fact we’ve developed technology for solar powered cars and tested it at the World Solar Challenge). We’re talking about this technology empowering local companies to transition from the automotive industry to renewables.

We’ve been working with Adelaide-based company, Heliostat SA (HSA) to harness the same skills and equipment they perfected making car parts to manufacture our heliostats. It’s a perfect fit for a company looking to transition its skilled workforce into a new and lucrative industry.

Our heliostat design is unique. It’s smaller than conventional heliostats, and uses an advanced control system to get high performance from a relatively inexpensive design.

Solar Thermal Research Hub

Modern art or a renewable masterpiece? Both? Our solar thermal research hub in Newcastle, New South Wales.

Heliostats are of course the linchpin of solar thermal technology. Consisting of a single mirror hooked up to a computer controller, heliostats work together in large groups – or arrays – to track, reflect and concentrate the sun’s heat onto a single receiver point. It’s sort of like using a magnifying glass to focus the sun’s heat to a point, except we’re not melting toy soldiers and ants. We use this heat to generate electricity, in this instance by heating steam to supercritical (550 degree plus) temperatures to drive a turbine.

This energy can then be stored cheaply as heat in solar thermal systems, giving this technology great potential for medium to large scale power – even when the sun isn’t shining.

This project is another example a decade of solar thermal research coming out of from our energy centre in Newcastle. The continued success and international demand for our technology continues to make a strong case for exporting our solar technology and creating more value for the Australian economy.

For more information on CSIRO’s solar thermal capabilities, visit http://www.csiro.au/en/Research/EF/Areas/Solar/Solar-thermal

Keen to see how the solar tower technology works? We’ve got you covered with this supercritical solar steam video.


The Showdown: Total Wellbeing and the 5:2 Diet

Studies have shown intermittent fasting can fend off illnesses including cancer, diabetes, heart disease and neurodegenerative disorders and may improve insulin sensitivity - but there is still a lot more to learn.

Some studies have shown intermittent fasting can fend off illnesses including cancer, diabetes, heart disease and neurodegenerative disorders and may improve insulin sensitivity – but there is still a lot more to learn.

This blog was originally published on the Total Wellbeing Diet website. 

Fans of intermittent fasting programs – think the 5:2 diet – often find they have success with weight loss, so today we are taking a look at the pros and cons of this kind of diet.

While fasting technically refers to not consuming any food or liquid at all, intermittent ‘fasting’ diets, like the 5:2 diet, do involve very minimal calorific intake on the fasting days – we’re talking around 2000 kilojoules all day, compared to the daily recommended intake of around 10,000 for men and 8,700 for women.  These diets run on the premise that you fast for 2 days of the week and consume as many kilojoules as you like on the non-fasting days.

While 5:2 is the most popular configuration, others find they have more success following a 4:3 or 6:1 ratio of non-fasting to fasting days.

The surprising news is, studies are suggesting these diets are successful in achieving weight loss. Even more surprising, Dr Manny Noakes, Research Director of our Food and Nutrition Flagship, says research is revealing people don’t eat more than they usually would on the non-fasting days – which was what many experts expected to see.

The research is still limited, but Dr Noakes says animal studies have been optimistic. Some of these animal studies have shown intermittent fasting can fend off illnesses including cancer, diabetes, heart disease and neurodegenerative disorders and may improve insulin sensitivity.

Dr Noakes says she herself would not discourage someone following such a diet that was seeing success, though she cautions there is still a lot to learn before it gets the seal of approval.

“If people who are overweight have struggled to lose weight following other diets, and they find this works for them, then that is great. Weight loss, particularly belly fat, has many health benefits – visceral fat is involved in disrupting blood-sugar regulation and is associated with high cholesterol levels. It’s also a risk factor for developing Type 2 diabetes and heart disease.”

On the flipside, Dr Noakes says what we don’t yet know about intermittent fasting is what these diets mean for long term health.

If the person is simply losing weight because they are effectively cutting a lot of kilojoules from their weekly intake, but they are still eating poorly, then I’d have to argue they still need to address their eating habits for longer term health gain.

She says while restricting your kilojoule intake is a guaranteed way to lose weight, cutting back indiscriminately can lead to an unbalanced, unhealthy diet, and recommends a more balanced approach. “It’s important not to cut key food groups including dairy, grains and cereals – you’ll be missing out on some important nutrients essential for good health.”

To summarise the pros and cons:

ON THE PRO SIDE:

  • Loss of body fat/ weight for overweight people is of health benefit in general.
  • Early research shows contrary to what scientists expected to see, people do not consume more kilojoules on the non-fasting days.
  • Intermittent fasting diets seem to be as effective as calorie restricted diets for weight loss.
  • There is early research to suggest it is effective in curbing cravings.
  • It provides an easier weight loss plan than standard kilojoule restricting diets – there is no weighing or ‘forbidden’ foods to worry about – on the fasting day, the limited calories will be accounted for very quickly and there are no restrictions on non-fasting days.

ON THE CON SIDE:

  • Fasting diets don’t change the way you eat – there is no evidence at this stage that suggests people eat healthier food than they did prior to starting the diet. While maintaining a healthy body weight is important for good health; a nutritious diet offers important vitamin and minerals.
  • There is limited research on the long term effectiveness – or any long term health issues related to intermittent fasting.
  • This lack of research means we don’t know who the diet works for and who it might not – for example, what medications or illnesses it may interact badly with.
  • Unlike diets that make healthy lifestyle changes – like the Total Wellbeing Diet – fasting diets do not provide advice on how to eat for optimal health, in a way that is sustainable in the long run.

Find out more about how we’re helping transform Australia with our innovative food and health science. 


Follow

Get every new post delivered to your Inbox.

Join 4,680 other followers