Pluto pointers: nine bite-size facts about the dwarf planet

New Horizons’ flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

New Horizons flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

By Adam Knight

We’re playing a vital role in NASA’s New Horizons mission, the first ever attempt to visit Pluto. Learn more about this historic exploration, and our other astronomical feats, at #CSIROSpace.

It’s more than five billion kilometres away, is smaller than our moon and it’s not even a planet. So why have we spent nine and a half years hurling a probe to the far reaches of the Solar System, just to catch a brief glimpse of a tiny ice dwarf known as Pluto?

Well for one, we know hardly anything about the composition of the dwarf planet and its moons. Learning more about how they formed will help us better understand the origins of our solar system.

But who knows what other secrets might be unlocked by the New Horizons spacecraft and its suite of scientific instruments: what ‘unknown unknowns’ we might discover when the data starts streaming on July 14?

Before the teams at NASA and John Hopkins University sink their teeth into this bounty of information, we thought we should take stock of some of the things we DO know about this odd chunk of ice and rock that sits on outer edge of the solar system.

1. Believed, and then seen: Pluto’s location was originally predicted by Percival Lowell in 1915, before being officially discovered on February 18, 1930 by Clyde Tombaugh at the Lowell Observatory in Arizona, USA.

2. When in Rome: Pluto was named by an 11 year old girl, Venetia Burney, after the Roman God of the underworld. Thankfully Pluto was chosen over the other options like Zymal, Constance and Cronus.

3. Out of its world: A list about Pluto would be incomplete without talking about the loss of its planet-hood status. In 2006 the International Astronomy Union finalised the definition of a planet, sadly Pluto was unable meet the criteria. Because Pluto is ‘unable to clear the neighbourhood around its orbit’ it was downgraded to the first ever dwarf planet.

4. You thought dial-up was bad: Even at the speed of light it will take 4.6 hours for our team at the Canberra Deep Space Communication Complex (CDSCC) to receive data from New Horizons.

5. Pluto’s pups: There are five moons in orbit around Pluto. Charon, the largest was discovered back in 1978. Hydra, Nix, Kerberos and Styx were all discovered between 2005 and 2012.

6. In’n’Out: At its closest point to the Sun or its ‘perihelion’ Pluto is 4.4 billion kilometres away. When it reaches its ‘aphelion’ or the point where Pluto is furthest from the Sun, the ice dwarf is 7.3 billion kilometres away from the warmth of our star. Because of this orbit, Pluto is periodically closer to the Sun than Neptune.

Just how dim is the sunlight on Pluto, some three billion miles away? This artist's concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn't as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

Just how dim is the sunlight on Pluto, some three billion miles away? This artist’s concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn’t as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

7. Long days, longer years: The length of a Pluto day is equal to 6 days, 9 hours and 17 minutes, compared to Earth’s 24 hours. It takes Pluto a whopping 247.9 Earth-years to complete one orbit of the Sun.

8. Bring a jacket: Temperatures on the planet range from a balmy -210C to -235C.

9. A rock and a cold place: Pluto is made up of one third frozen water with the remaining two thirds consisting of rock.

The New Horizons spacecraft is due to pass by Pluto on the 14th July, and our team at the CDSCC are ready to receive the first ever images and video as they’re sent through. NASA will be making much of it available soon after, so stay tuned as we will be sharing these images on our blog, Facebook, Twitter and Instagram.


Remote-I: connecting science and sight in remote communities

Medical service via email: an image of a patient's retina can be easily sent to an ophthalmologist.

Medical service via the net: an image of a patient’s retina, pictured here, can be easily sent to an ophthalmologist to review.

We can thank high speed internet for many things: the social media revolution, streaming services like Netflix and iView, and a never ending supply of cat videos on YouTube.

But it also has applications in the real world, providing connections to people and places that may otherwise miss out on services and technology that are otherwise taken for granted.

The perfect example of this? Remote-I: our new healthcare technology that uses satellite broadband to help prevent blindness in remote communities.

It’s a high-tech but simple solution to a widespread problem for Indigenous Australians, known as diabetic retinopathy, or DR.

DR, which can affect any diabetes sufferer, damages the small blood vessels in the light-sensitive tissue in the retina (nerve layer at the back of the eye) which leads to vision loss. According to a 2008 National Indigenous Eye Health Survey, around 1 in 16 Indigenous people have diabetes, and of these people with diabetes around one in three have DR. Diabetes was the cause of 13% of vision loss and 9% of blindness among Indigenous adults.

Not only does DR affect the Indigenous population at nearly four times the rate of the non-Indigenous population, it’s also estimated only one in five Indigenous people with diabetes has had an eye exam in the last year. DR can be avoided by having regular eye checks, however those in remote communities simply don’t have access to these services.

Patient’s retinal images and health data can be sent from a remote community health clinic to the desk of a city based ophthalmologist.

Patients’ retinal images and health data can be sent from a remote community health clinic to the desk of a city based ophthalmologist.

Enter Remote-I. Developed by Prof Yogi Kanagasingam and his team, the Remote-I platform works by capturing high-resolution images of a patient’s retina with a low-cost retinal camera, which are then uploaded over satellite broadband by a local health worker.

Then comes the really cool part: once the health worker uploads the patient’s image, an ophthalmologist can access it anywhere at any time. It takes about five minutes to read the images, create the report, and then send it back to the health worker.

The team recently trialed the technology in the Torres Strait Islands and southern Western Australia. As part of the trial, over 1,000 patients received a free eye screening appointment at a local community health centre.

The screening program identified 68 patients who were at high risk of going blind.

The technology also has the potential to benefit older Australians living in remote areas who may have trouble accessing medical facilities

According to Yogi, technologies like Remote-I can help close the gap in access to healthcare in remote and regional Australia.

“If we can pick up early changes and provide the appropriate intervention, we can actually prevent blindness,” says Yogi.

“After our successful trials, we’re really looking to see how we can work with governments and health care providers to continue the roll-out of this technology across other states and territories.

Yogi and his team are also conducting trials to further refine the Remote-I system with a National Health and Medical Research Council (NHMRC) development grant to create an algorithm that can automatically identify all the pathologies related to diabetic retinopathy, and send them for referral.

After achieving such successful results in Australia, we’ve also licensed Remote-I to a Silicon Valley spin-off TeleMedC, which plan to take the technology to the US and world market as part of its ‘EyeScan’ diagnostic solution.

Find out more about our work in Digital Health. 


PLUTO: T-20 Days and Counting

Nicholas Kachel:

The final countdown begins! New Horizons is on the home stretch for its ever-so-brief celestial encounter with Pluto, and it’s safe to say we’re getting a little excited. Read on to find out what the spacecraft will be doing once it reaches this distant world. And for more #CSIROSpace news, be sure to fly over to http://www.csiro.au/en/Research/Astronomy

Originally posted on Universe @ CSIRO:

Australia’s key role in NASA’s New Horizons mission

Historic Encounter: Artist's concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA Historic Encounter: Artist’s concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA

After a voyage of 3,443 days and travelling nearly 5 billion kilometres from home, NASA’s New Horizons spacecraft is now just 20 days away from its historic encounter with the distant world of Pluto.

The science team located at the Applied Physics Laboratory (APL) at the Johns Hopkins University in Baltimore, Maryland and the Southwest Research Institute (SwRI) in San Antonio, Texas have been dreaming of this moment since plans for the mission were first hatched back in 1989.

Key to the success of this mission are the powerful, yet ultra-sensitive communication dishes at the Canberra Deep Space Communication Complex – a part of the Deep Space Network (DSN) – one of three NASA tracking stations located in Australia, Spain and USA.

Listening for Whispers: Canberra Deep Space Communication Complex. Listening for Whispers: Canberra…

View original 899 more words


Gifts of the GAB: Five not-so-fishy facts about the Great Australian Bight

Southern right whale at the Head of Bight, South Australia.

Southern right whale at the Head of Bight, South Australia.

Tomorrow is World Ocean Day, the United Nations-recognised day of ocean celebration and action. It’s a day to stop and take stock of the importance of the ocean and its major role in our daily life. Our coastlines and the waters beyond are an intrinsic part of Australian life; not to mention their importance to our climate, biodiversity, and countless industries.

We’re involved in a veritable ocean of research around the sea and skies of Australia, which you can learn more about here. There’s so much that we could talk about, from our world-leading shark research, to our sustainable prawn fisheries in the Timor Sea … but today we’d like to focus on that great expanse of salty water to Australia’s south: the Great Australian Bight. Or, as it’s so affectionately known, the GAB.

IMG_2443It’s an amazing place. Here are just five gifts of the GAB:

  1. The GAB produces 25 per cent of Australia’s seafood (by value), supporting Australia’s largest commercial fishery (by volume).
  2.  More than 85 per cent of known species of fish, molluscs and echinoderms in the waters off Australia’s southern coast are found nowhere else in the entire world
  3. The region contains great white sharks and iconic marine mammals such as whales, seals, dolphins and seabirds, and is home to more than 80 per cent of Australian sea lions.
  4. The GAB’s physical characteristics make it globally unique and quite distinct from the adjacent seas east and west of Australia.
  5. A 4-year, $20 million Great Australian Bight Research Program is one of the largest whole-of-ecosystem studies ever undertaken in Australia. Specimens will be collected from the deepest set of samples ever taken from the area, to a depth of 3 kilometres. Did you know we recently deployed 125 archival tags into juvenile southern bluefin tuna in the Great Australian Bight to understand the movement and behaviour of these fish in what is their most significant feeding ground in the world. If you find a fish tag, please let us know. You can find more info here.

We’re also working with BP, the South Australian Research and Development Institute (SARDI), the University of Adelaide, and Flinders University to improve understanding of the Great Australian Bight. Our collaborative research will ensure future development in the region is ecologically sustainable. Find out more here.


Putting Cyprus Hill on the map: how we’re bringing our solar technology to the world

Have you ever wondered what it would be like to see a solar field constructed in less than three minutes? Of course you haven’t, but what the heck, here it is.

This timelapse footage was taken on the south coast of Cyprus, where our team recently designed and installed a solar thermal field of 50 heliostats (mirrors that reflect the sun’s heat to a central tower) which could generate enough heat to boil a kettle in less than five seconds.

Super quick cups of tea aside, solar energy has enormous potential for Cyprus.

Being the southern-most member of the EU, the country is blessed with abundant sunshine. However most of the island nation’s electricity is generated – expensively – using oil, making solar an attractive option for power generation.

This is good news for Cyprus which, under European legislation, is required to derive 13% of its total energy consumption from renewable sources by 2020.

These are just some of the driving forces behind the Cyprus Institute’s decision to establish a solar thermal research facility at Pentakamo on the south coast, a stone’s throw from the Mediterranean Sea.

Solar Field low

A Mediterranean getaway like no other. This thermal solar field is part of a plan for Cyprus to generate 13% of its energy requirements through renewable sources. Credit: Cyprus Institute

For the team in our Energy Flagship, this project was a big step, as it’s the first time we’ve deployed this cutting edge technology outside of our own backyard.

“We’ve developed a lot of confidence building our own fields,” said our solar research leader Wes Stein, “but we were glad to step out of our comfort-zone for the Cyprus Institute because we shared a common goal. They’ve been a fantastic partner, and in fact we’ve just signed a MoU to further the partnership and undertake joint solar research with them.

“The project has given us a strong understanding of how to deploy these projects outside of our own safety zone and into other environments. And that’s where we want to go, we want solar thermal to be commercialised by building on the good research that we’re doing now.”

The Solar field of dreams and the dreamers. From left to right: Professor Costas Papanicolas, President of the Cyprus Institute, Mike Collins, CSIRO Mechanical Engineer, Wes Stein, CSIRO Solar Research Leader

The people who made it happen, from left to right: Professor Costas Papanicolas, President of the Cyprus Institute, Mike Collins, CSIRO Mechanical Engineer, Wes Stein, CSIRO Solar Research Leader

With a unique and smaller than usual design, our high-performance heliostats are well suited to the rugged terrain on Cyprus’ south coast. They also give the user more control over the intensity of the solar concentration and versatile installation.

Solar-thermal tower technology uses many mirrors (heliostats) that accurately track the sun, reflecting light towards a receiver on top of a tower which heats a fluid. The heated fluid is then used to drive a turbine for generating electricity and, in the case of the Cyprus Institute’s research, also powering a sea-water desalination plant.

As thermal energy can also be stored relatively cheaply compared to other technologies, there’s great potential for large-scale power generation regardless of when the sun is shining.

The experimental facility in Cyprus will be used for demonstration purposes by the Cyprus Institute. In the longer-term, we will be looking into the commercial use of the technology for other Mediterranean islands and the Middle East.

You can read more about the work we’re doing in solar and other renewable energy here.

Solar field of dreams. Credit: Cyprus Institute

Solar field of dreams. Credit: Cyprus Institute


A new antenna for old friends: celebrating 55 years of AUS-US space communication

NEW VISTAS: Deep Space Station 35 will operate for many decades. We can only begin to imagine what future discoveries it might make. Credit: Adam McGrath

NEW VISTAS: Deep Space Station 35 will operate for many decades. We can only begin to imagine what future discoveries it might make. Credit: Adam McGrath

It’s been a momentous couple of days in the history of Australian space exploration. Just yesterday, the newest antenna in NASA’s Deep Space Network was officially commissioned at our Canberra Deep Space Communication Complex, five years to the day from its original ground breaking ceremony.

DAY OR NIGHT: Deep Space Station 35 will be operating 24/7 to help make discoveries in deep space.

DAY OR NIGHT: Deep Space Station 35 will be operating 24/7 to help make discoveries in deep space.

The new dish, Deep Space Station 35, incorporates the latest in Beam Waveguide technology: increasing its sensitivity and capacity for tracking, commanding and receiving data from spacecraft located billions of kilometres away across the Solar System.

The Canberra Complex is one of three Deep Space Network stations capable of providing two-way radio contact with robotic deep space missions. The Complex’s sister stations are located in California and Spain. Together, the three stations provide around-the-clock contact with over 35 spacecraft exploring the solar system and beyond. You may remember this technology being utilised recently for the Rosetta and Philae comet landing; and for communicating with the ever so far-flung New Horizons spacecraft on its journey past Pluto.

"Does it get Channel two?"

“Does it get Channel Two?”

As a vital communication station for these types of missions, the new antenna will make deep space communication for spacecraft and their Earth-bound support staff even easier.

But don’t put away the space candles just yet. For today marks the 55 anniversary of the signing of the original space communication and tracking agreement signed between Australia and the United States, way back on the 26th February 1960.

It is a partnership that has that has led to many historic firsts and breakthrough discoveries – the first flybys of Mercury and Venus, the vital communication link and television coverage of the first Moonwalk, robotic rover landings on (and amazing views from) the surface of Mars, the first ‘close-ups’ of the giant outer planets and first-time encounters with worlds such as Pluto.

The first ever Moon landing: a momentous occasion, broadcast around the world thanks to the Australian-US partnership.

The first ever Moon landing: a momentous occasion, broadcast around the world thanks to the Australian-US partnership.

So, we say welcome to the newest addition to the Deep Space Network and happy birthday to our space-relationship with the US. Here’s to another fifty five years of success!

P.S. We couldn’t finish the blog without including this little gem:

A famous photobomb, taken during the antennae's construction.

A famous photobomb, taken during the antennae’s construction.


How our supercomputers are helping fight heart rhythm disease

Dr Adam Hill and Professor Jamie Vendenberg are driving this groundbreaking research.

Dr Adam Hill and Professor Jamie Vendenberg working on the groundbreaking technology.

Heart rhythm disease is a life-threatening, electrical disorder that stops the heart from pumping blood effectively. It is a lethal condition that is responsible for around 12 per cent of Australian deaths each year.

In order to open the door to better diagnosis and treatment for heart rhythm disease, we’ve been working with the Victor Chang Cardiac Research Institute to develop our very own ‘virtual heart’. What’s more, we’ve done this using the same technology that drives your favourite computer games.

Impressively, when we ran a simulation through the virtual heart, it was able to model hundreds of thousands of different heart beats. This then allowed scientists to screen all of those heart beats, and search for abnormalities.

hearts

According to the Victor Chang Institute’s Dr Adam Hill who led the research, this has taken us a step closer to understanding rhythm disturbances in our most vital muscle.

“This research is hugely exciting! We were able to identify why some patients have abnormal ECG signals, and how a person’s genetic background can affect the severity of their disease,” he says.

Analysis on this scale has simply never been possible before. The simulation took just ten days, thanks to the computational grunt of CSIRO’s Bragg supercomputer cluster, which combines traditional CPUs with more powerful graphics processing units or GPUs.

GPUs have typically been used to render complex graphics in computer games. However they can also be used to accelerate scientific computing by multi-tasking on hundreds of computing cores.

By comparison, if you were to try to do the same simulation using a standard desktop PC, it would take 21 years to get the job done.

Powerful and eco-friendly? This is one super computer worth Bragging about.

Powerful and eco-friendly? This is one super computer worth Bragging about.

Adam hopes the new technology will help doctors read ECGs more accurately, which will mean faster, more accurate diagnosis of heart rhythm disease. By understanding why the same disorder affects people differently, the right treatment can be given to the right patients.

Scientists at the Victor Chang Institute are now using these discoveries to develop automatic computerised tools for diagnosing heart rhythm disorders.

Read more about how we’re using data and digital technologies to tackle health challenges on our website.


Follow

Get every new post delivered to your Inbox.

Join 4,679 other followers