The hunt for ET will boost Australian astronomy

The 64-metre Parkes Radio telescope will be instrumental in the search for extraterrestrial intelligence. CSIRO/David McClenaghan, CC BY

The 64-metre Parkes Radio telescope will be instrumental in the search for extraterrestrial intelligence. CSIRO/David McClenaghan, CC BY

Lewis Ball, CSIRO

It’s already an exciting time for Australia in the field of astronomy and space science. But we’ve just received an astronomical boost with the announcement of CSIRO’s role with the Breakthrough Prize Foundation’s (BPF) US$100 million dollar search for extraterrestrial intelligence, called Breakthrough Listen.

CSIRO has signed a multi-million dollar agreement to use its 64 metre Parkes radio telescope in the quest to search for intelligent life elsewhere in the universe. Breakthrough Listen will be allocated a quarter of the science time available on the Parkes telescope from October 2016 for a period five years, on a full cost recovery basis.

The Parkes observations will be part of a larger set of initiatives to search for life in the universe. The ET hunters will also use time on the Green Bank telescope in West Virginia, operated by the US National Radio Astronomy Observatory, and a telescope at the University of California’s Lick Observatory.

Why Parkes?

CSIRO has the only capability for radio astronomy in the southern hemisphere that can deliver the scientific goals for the new initiative. The Parkes Radio Telescope is essential for the scientific integrity of the Search for Extraterrestrial Intelligence (SETI). It is ideally situated for a search such as this. The most interesting and richest parts of our own galaxy, the Milky Way, pass directly overhead. If we are going to detect intelligent life elsewhere, it is most likely going to be found in that part of the galaxy towards the centre of the Milky Way.

The Milky Way as seeing from the south hemisphere in the winter in a 180 degrees view. The bulge towards the center of our galaxy is directly above the head of the observer. Flickr/Luis Argerich, CC BY-NC

The Parkes Radio Telescope is also one of the world’s premier big dishes and has outstanding ability to detect weak signals that a search like this requires. It has always been at the forefront of discovery, from receiving video footage of the first Moon walk on 20 July 1969 (which was dramatised in the movie The Dish), to tracking NASA’s Curiosity rover during its descent onto Mars in 2012, to now once again searching for intelligent life.

It has also played a leading role in the detection and study of pulsars, small dense stars that can spin hundreds of times a second, the recent discovery of enigmatic (but boringly named) fast radio bursts, or FRBs, and in the search for gravitational waves.

Parkes also played a leading role in previous SETI searches. In 1995 the California-based SETI Institute used the telescope for six months for its Project Phoenix search. The Parkes telescope provided the critical capability to search the southern sky that could not be accessed using telescopes in the northern hemisphere.

The latest initiative is being led by a number of the world’s most eminent astrophysicists and astronomers. Professor Matthew Bailes, ARC Laureate Fellow at the Centre for Astrophysics and Supercomputing at Swinburne University of Technology in Melbourne, will be the Australian lead of the SETI observing team using the Parkes telescope.

Knock-on benefits

The program will nicely complement the existing scientific uses of the Parkes telescope. Although it will take up a quarter of Parkes time, it will benefit the research undertaken during the other three-quarters of the time the telescope is in operation. It will enable even greater scientific capability to be provided to a wide range of astronomy research through both the financial support and through the provision of new data processing and analysis systems and techniques. Incredible advances in computing technology make it possible for this new search to scan much greater swaths of the radio spectrum than has ever before been explored.

Rather than trying to guess where on the radio dial astronomers might receive a signal, they can now search an entire region of the radio spectrum in a single observation. The dramatic increase in data processing capability has also meant that astronomers can analyse telescope data in new ways, searching for many different types of artificial signals. CSIRO is thrilled to be part of this global initiative which takes advantage of the significant advances that have been made in computation and signal processing since the search for extraterrestrial life began. The probability of detecting intelligent life is small but it is much greater today than ever before.

To be the first to discover intelligent life would be a phenomenal achievement not only for the scientific community but for all humankind.The Conversation

Lewis Ball is Director, Astronomy and Space Science at CSIRO.

This article was originally published on The Conversation. Read the original article.


How to send a photo from Pluto (and 8 other cool New Horizon facts)

All you need to know about  getting images of Pluto back to Earth

Interplanetary MMS explained. 

We’re playing a vital role in NASA’s New Horizons mission, the first ever attempt to visit Pluto. Learn more about this historic exploration, and our other astronomical feats, at #CSIROSpace.

Talk about a long distance call.

Some time tonight, around 9:57pm AEST, we’re expecting a world-first ‘phone call’ from the outer edges of the solar system.

The team at our Canberra Deep Space Communications Centre (CDSCC)  will be the first to hear from the New Horizons spacecraft as it completes its nine-and-half-year journey to the solar system’s most famous dwarf planet, Pluto. NASA and Johns Hopkins University Applied Physics Laboratory are the lead agencies on this multi-million dollar project, but our CDSCC facility will be integral in communicating with the far-flung vessel.

Scientists have never before had an opportunity to study Pluto and its surrounding moons (Charon, Hydra, Nix, Styx and Kerebros) with such detail and precision. Even images from Hubble have shown us little more than blobs. Using an immense array of sensors and cameras, New Horizons will send us the most comprehensive images and data from the icy dwarf planet the world has ever seen. This information will not only shed new light on Pluto’s mysteries, but it will also help us better understand the origin and evolution of Earth and our planetary neighbours.

Before New Horizons reaches its mission objective, let’s find out a little more about this spacecraft and the amazing science powering it to Pluto.

  1. A long time ago: New Horizons (NH) blasted off from Cape Canaveral in Florida on the 19th January 2006: the same year the X-Box 360 was released in Australia, the Beaconsfield mine disaster hit the headlines and Peter Brock and Steve Irwin passed away.
  2. A powerful name: The probe is powered by a single radioisotope thermoelectric generator (RTG), which transforms the heat from the natural radioactive decay of plutonium dioxide into electricity. Can you guess which dwarf planet plutonium-238 is named after?
  3. An interplanetary pit stop: NH made a quick detour to Jupiter in 2007. During this interplanetary layover, the probe used the opportunity to test some of its scientific instruments, before using the gas giant’s gravity to give it a 14,000km/h slingshot towards Pluto.
  4. Short but sweet: It’s only going to be in range of Pluto for 5 hours, capturing immense amounts of data, before it starts a new mission. After Pluto, NH will venture on to the mysterious Kuiper belt.
  5. A close-ish encounter: NH will duck between Pluto and its neighbouring moon, Charon, before it skims approximately 12,500 kilometres above Pluto’s surface, unleashing its suite of scientific observations.
  6. Me first: Our CDSCC will be one of the first places on Earth to receive the data from New Horizons, in binary form (a massive cache of 1s and 0s)… which is great if you can read the Matrix.
  7. Whispers from space: By the time it reaches Earth, the radio signals from New Horizons are 20 billion times weaker than the power of a watch battery. These are the signals captured and processed by CDSCC’s giant antenna dishes before being sent to waiting mission scientists.
  8. Six of the best: Alice, LORRI, Ralph, PEPSSI, SWAP and Rex. No, it’s not the next team of contestants on The Voice – these are the names of the six scientific instruments mounted to New Horizons. The instruments are equipped to collect a vast array of information, and include imaging spectrometers, particle detection instruments and a passive radiometer.
  9. Students riding shot-gun: There is also a plus-one tagging along: a dust particle counter created by a group of students from the University of Colorado, which puts pretty much every other student group student project in the history of the world to shame.

Remember to check out #CSIROSpace for the latest updates!


Pluto pointers: nine bite-size facts about the dwarf planet

New Horizons’ flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

New Horizons flies past Pluto in this artists’ rendition. Image: NASA/JHUAPL

By Adam Knight

We’re playing a vital role in NASA’s New Horizons mission, the first ever attempt to visit Pluto. Learn more about this historic exploration, and our other astronomical feats, at #CSIROSpace.

It’s more than five billion kilometres away, is smaller than our moon and it’s not even a planet. So why have we spent nine and a half years hurling a probe to the far reaches of the Solar System, just to catch a brief glimpse of a tiny ice dwarf known as Pluto?

Well for one, we know hardly anything about the composition of the dwarf planet and its moons. Learning more about how they formed will help us better understand the origins of our solar system.

But who knows what other secrets might be unlocked by the New Horizons spacecraft and its suite of scientific instruments: what ‘unknown unknowns’ we might discover when the data starts streaming on July 14?

Before the teams at NASA and John Hopkins University sink their teeth into this bounty of information, we thought we should take stock of some of the things we DO know about this odd chunk of ice and rock that sits on outer edge of the solar system.

1. Believed, and then seen: Pluto’s location was originally predicted by Percival Lowell in 1915, before being officially discovered on February 18, 1930 by Clyde Tombaugh at the Lowell Observatory in Arizona, USA.

2. When in Rome: Pluto was named by an 11 year old girl, Venetia Burney, after the Roman God of the underworld. Thankfully Pluto was chosen over the other options like Zymal, Constance and Cronus.

3. Out of its world: A list about Pluto would be incomplete without talking about the loss of its planet-hood status. In 2006 the International Astronomy Union finalised the definition of a planet, sadly Pluto was unable meet the criteria. Because Pluto is ‘unable to clear the neighbourhood around its orbit’ it was downgraded to the first ever dwarf planet.

4. You thought dial-up was bad: Even at the speed of light it will take 4.6 hours for our team at the Canberra Deep Space Communication Complex (CDSCC) to receive data from New Horizons.

5. Pluto’s pups: There are five moons in orbit around Pluto. Charon, the largest was discovered back in 1978. Hydra, Nix, Kerberos and Styx were all discovered between 2005 and 2012.

6. In’n’Out: At its closest point to the Sun or its ‘perihelion’ Pluto is 4.4 billion kilometres away. When it reaches its ‘aphelion’ or the point where Pluto is furthest from the Sun, the ice dwarf is 7.3 billion kilometres away from the warmth of our star. Because of this orbit, Pluto is periodically closer to the Sun than Neptune.

Just how dim is the sunlight on Pluto, some three billion miles away? This artist's concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn't as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

Just how dim is the sunlight on Pluto, some three billion miles away? This artist’s concept of the frosty surface of Pluto with Charon and our sun as backdrops illustrates that while sunlight is much weaker than it is here on Earth, it isn’t as dark as you might expect. In fact, you could read a book on the surface of Pluto. Image credit NASA/Southwest Research Institute/Alex Parker

7. Long days, longer years: The length of a Pluto day is equal to 6 days, 9 hours and 17 minutes, compared to Earth’s 24 hours. It takes Pluto a whopping 247.9 Earth-years to complete one orbit of the Sun.

8. Bring a jacket: Temperatures on the planet range from a balmy -210C to -235C.

9. A rock and a cold place: Pluto is made up of one third frozen water with the remaining two thirds consisting of rock.

The New Horizons spacecraft is due to pass by Pluto on the 14th July, and our team at the CDSCC are ready to receive the first ever images and video as they’re sent through. NASA will be making much of it available soon after, so stay tuned as we will be sharing these images on our blog, Facebook, Twitter and Instagram.


PLUTO: T-20 Days and Counting

Nicholas Kachel:

The final countdown begins! New Horizons is on the home stretch for its ever-so-brief celestial encounter with Pluto, and it’s safe to say we’re getting a little excited. Read on to find out what the spacecraft will be doing once it reaches this distant world. And for more #CSIROSpace news, be sure to fly over to http://www.csiro.au/en/Research/Astronomy

Originally posted on Universe @ CSIRO:

Australia’s key role in NASA’s New Horizons mission

Historic Encounter: Artist's concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA Historic Encounter: Artist’s concept of the New Horizons spacecraft flying past Pluto and Charon. Image: NASA

After a voyage of 3,443 days and travelling nearly 5 billion kilometres from home, NASA’s New Horizons spacecraft is now just 20 days away from its historic encounter with the distant world of Pluto.

The science team located at the Applied Physics Laboratory (APL) at the Johns Hopkins University in Baltimore, Maryland and the Southwest Research Institute (SwRI) in San Antonio, Texas have been dreaming of this moment since plans for the mission were first hatched back in 1989.

Key to the success of this mission are the powerful, yet ultra-sensitive communication dishes at the Canberra Deep Space Communication Complex – a part of the Deep Space Network (DSN) – one of three NASA tracking stations located in Australia, Spain and USA.

Listening for Whispers: Canberra Deep Space Communication Complex. Listening for Whispers: Canberra…

View original 899 more words


The smell of rain: how our scientists invented a new word

Rain: you can tell when rain is coming just by the smell. Flickr/Ulf Bodin, CC BY-NC-SA

Rain: you can tell when it’s coming just by the smell. Flickr/Ulf Bodin, CC BY-NC-SA

By Howard Poynton, CSIRO

Australia’s CSIRO has come up with some pretty amazing inventions over the past 86 years of research, from polymer banknotes to insect repellent and the world-changing Wi-Fi. But we can also lay claim to something a little more esoteric – we actually invented a whole new word.

And no, we’re not talking about one of these new-fangled internet words like “YOLO”, “selfie” or “totes”.

The word is “petrichor”, and it’s used to describe the distinct scent of rain in the air. Or, to be more precise, it’s the name of an oil that’s released from the earth into the air before rain begins to fall.

This heady smell of oncoming wet weather is something most Australians would be familiar with – in fact, some scientists now suggest that humans inherited an affection for the smell from ancestors who relied on rainy weather for their survival.

Origins

Even the word itself has ancient origins. It’s derived from the Greek “petra” (stone) and “ichor” which, in Greek mythology, is the ethereal blood of the gods.

But the story behind its scientific discovery is a lesser known tale. So, how is it that we came to find this heavenly blood in the stone?

Nature of Argillaceous Odour might be a mouthful, but this was the name of the paper published in the Nature journal of March 7, 1964, by CSIRO scientists Isabel (Joy) Bear and Richard Thomas, that first described petrichor.

Thomas had for years been trying to identify the cause for what was a long-known and widespread phenomena. As the paper opened:

That many natural dry clays and soils evolve a peculiar and characteristic odour when breathed on, or moistened with water, is recognised by all the earlier text books of mineralogy.

rain 2

Was it something in the soil that gave rise to the smell? Flickr/Georgie Sharp, CC BY-NC

The odour was particularly prevalent in arid regions and was widely recognised and associated with the first rains after a period of drought. The paper went on to say:

There is some evidence that drought-stricken cattle respond in a restless matter to this “smell of rain”.

The smell had actually been described already by a small perfumery industry operating out of India, which had successfully captured and absorbed the scent in sandalwood oil. They called it “matti ka attar” or “earth perfume”. But its source was still unknown to science.

Joy and Richard, working at what was then our Division of Mineral Chemistry in Melbourne, were determined to identify and describe its origin.

By steam distilling rocks that had been exposed to warm, dry conditions in the open, they discovered a yellowish oil – trapped in rocks and soil but released by moisture – that was responsible for the smell.

The diverse nature of the host materials has led us to propose the name “petrichor” for this apparently unique odour which can be regarded as an “ichor” or “tenuous essence” derived from rock or stone.

The oil itself was thus named petrichor — the blood of the stone.

Bring on the humidity

The smell itself comes about when increased humidity – a pre-cursor to rain – fills the pores of stones (rocks, soil, etc) with tiny amounts of water.

While it’s only a minuscule amount, it is enough to flush the oil from the stone and release petrichor into the air. This is further accelerated when actual rain arrives and makes contact with the earth, spreading the scent into the wind.

According to the Nature Paper:

In general, materials in which silica or various metallic silicates predominated were outstanding in their capacity to yield the odour. It was also noted that the odour could be obtained from freshly ignited materials rich in iron oxide, with or without silica.

It’s a beautiful sequence of events, but one that may be hard to visualise.

Thankfully, in a testament to the ongoing scientific fascination with this finding, a team of scientists at the Massachusetts Institute of Technology have just this year released a super slow motion video of the petrichor process in motion.

Using high-speed cameras, the researchers observed that when a raindrop hits a porous surface, it traps tiny air bubbles at the point of contact. As in a glass of champagne, the bubbles then shoot upward, ultimately bursting from the drop in a fizz of aerosols.

The team was also able to predict the amount of aerosols released, based on the velocity of the raindrop and the permeability of the contact surface which may explain how certain soil-based diseases spread.

Lasting legacy

There’s a small body of research and literature on petrichor that’s fascinating in its own right, including Thomas and Bear’s subsequent paper Petrichor and Plant Growth a year after they first named the smell.

So what happened to Joy Bear and Richard Thomas?

Richard Thomas with Joy Bear, studying petrichor (date unknown).

Richard Thomas with Joy Bear, studying petrichor (date unknown).

Richard had actually retired from CSIRO in 1961 when he was First Chief of the Division of Minerals Chemistry. He died in 1974, aged 73.

Joy, aged 88, a true innovator and pioneer in her field, retired from CSIRO only in January this year, after a career spanning more than 70 years.

The joint discovery of petrichor was just part of a truly remarkable and inspiring career which culminated in 1986, with Joy’s appointment as a Member of the Order of Australia for services to science.

We are thankful to both for the lasting legacy on giving a name to the smell of rain and to Joy for the role model she has been to so many women in science.


This is part of a series on CSIRO Inventions.

This article was originally published on The Conversation.

Read the original article.


Discovering the enigma moth: a golden-winged relic from a long-past age

A female adult 'enigma' moth on a Southern Cypress-pine stem. Image: George Gibbs

A female adult ‘enigma’ moth on a Southern Cypress-pine stem. Note the beautiful colouring of its wings. Image: George Gibbs

A living dinosaur. A missing evolutionary link. A specimen unlike any seen before it.

With such weighty words being thrown around, you could be forgiven for thinking we had discovered a Yowie, a Loch Ness Monster, or another Jurassic Park script.  But the truth, while being a little more unassuming, is no less the stuff of legends.

In actual fact, we’ve found an enigma.

Today, we unveiled the Aenigmatinea glatzella – which has been coined the ‘enigma moth’ – to the world. This tiny insect, which has so far only been found in an isolated pocket of Kangaroo Island, South Australia, represents not just an entire new species of moth, but an entire new family. It’s the Lepidoptera equivalent of discovering, say, the platypus.

This is the first time since the 1970s that a new family of primitive moths has been identified anywhere in the world. So for a bald bug that lives, mates and dies in one day and could fit on a five cent piece, the enigma moth is causing quite a stir.

A dorsal illustration of the moth.

An illustration of the dorsal side of the moth.

You can read more about the moth and our role in its discovery – as well as the launch of a foundation to support research into Australian moths and butterflies, and the moths and butterflies in our Australian National Insect Collection in Canberra – here. But in the meantime, we present to you the top five facts about this flying enigma:

    1. It is helping us crack evolution’s code. DNA analysis indicates that the evolution of moths and butterflies is even more complex than previously thought. For example, while the discovery of this new moth strengthens the evolutionary relationships between other primitive moth families, it also suggests that tongues evolved in moths and butterflies more than once.
    2. The species name glatzella has an amusing double meaning. While bestowed in honour of its discoverer, Dr Richard Glatz, in German glatze means ‘bald head’. Indeed, this cryptic moth is bald – it hardly has any scales on its head. But elsewhere on the body, these scales appear as a brilliant purple and gold.
    3. It’s rare. It has so far only been found at one location on Kangaroo Island off the coast of South Australia.
    4. It lives on Southern Cypress-pine trees (Callitris gracilis), a very ancient element of our flora dating back to the supercontinent Gondwana.
    5. The adult moths are short-lived. In just one day they emerge from their cocoons, mate, females lay their eggs, and then die.

And, in case you haven’t seen it already, we’ve created this excellent short film of the enigma moth to honour its official introduction to the public. Enjoy!


A new antenna for old friends: celebrating 55 years of AUS-US space communication

NEW VISTAS: Deep Space Station 35 will operate for many decades. We can only begin to imagine what future discoveries it might make. Credit: Adam McGrath

NEW VISTAS: Deep Space Station 35 will operate for many decades. We can only begin to imagine what future discoveries it might make. Credit: Adam McGrath

It’s been a momentous couple of days in the history of Australian space exploration. Just yesterday, the newest antenna in NASA’s Deep Space Network was officially commissioned at our Canberra Deep Space Communication Complex, five years to the day from its original ground breaking ceremony.

DAY OR NIGHT: Deep Space Station 35 will be operating 24/7 to help make discoveries in deep space.

DAY OR NIGHT: Deep Space Station 35 will be operating 24/7 to help make discoveries in deep space.

The new dish, Deep Space Station 35, incorporates the latest in Beam Waveguide technology: increasing its sensitivity and capacity for tracking, commanding and receiving data from spacecraft located billions of kilometres away across the Solar System.

The Canberra Complex is one of three Deep Space Network stations capable of providing two-way radio contact with robotic deep space missions. The Complex’s sister stations are located in California and Spain. Together, the three stations provide around-the-clock contact with over 35 spacecraft exploring the solar system and beyond. You may remember this technology being utilised recently for the Rosetta and Philae comet landing; and for communicating with the ever so far-flung New Horizons spacecraft on its journey past Pluto.

"Does it get Channel two?"

“Does it get Channel Two?”

As a vital communication station for these types of missions, the new antenna will make deep space communication for spacecraft and their Earth-bound support staff even easier.

But don’t put away the space candles just yet. For today marks the 55 anniversary of the signing of the original space communication and tracking agreement signed between Australia and the United States, way back on the 26th February 1960.

It is a partnership that has that has led to many historic firsts and breakthrough discoveries – the first flybys of Mercury and Venus, the vital communication link and television coverage of the first Moonwalk, robotic rover landings on (and amazing views from) the surface of Mars, the first ‘close-ups’ of the giant outer planets and first-time encounters with worlds such as Pluto.

The first ever Moon landing: a momentous occasion, broadcast around the world thanks to the Australian-US partnership.

The first ever Moon landing: a momentous occasion, broadcast around the world thanks to the Australian-US partnership.

So, we say welcome to the newest addition to the Deep Space Network and happy birthday to our space-relationship with the US. Here’s to another fifty five years of success!

P.S. We couldn’t finish the blog without including this little gem:

A famous photobomb, taken during the antennae's construction.

A famous photobomb, taken during the antennae’s construction.


Follow

Get every new post delivered to your Inbox.

Join 4,743 other followers