The future of biodiversity is in our hands

Australia’s Biodiversity series – Part 12: Conclusions

When talking about the fate of biodiversity it’s easy to get bogged down in doom and gloom—we know that it’s in decline, that human populations and demand for resources continue to grow, and therefore the pressure we’re putting on other species is increasing, and that big gaps remain in our understanding of the biodiversity that’s out there.

Australia is developing a vast capacity for monitoring the natural environment through the Terrestrial Ecosystem Research Network. Image: Gregory Heath.

Australia is developing a vast capacity for monitoring the natural environment through the Terrestrial Ecosystem Research Network. Image: Gregory Heath.

But there are solutions. Since the concept of biodiversity first emerged in the 1980s, the science dedicated to understanding our natural systems has come a long way. With the emergence of new technologies it has become possible to find out far more about the species we share the planet with, and we can do it with far more efficiency.

It’s these big challenges and scientific solutions that we focused on in our book, Biodiversity: Science and Solutions for Australia. In the twelfth and final video in our Australia’s Biodiversity series, the book’s editors, Dr Steve Morton, Dr Mark Lonsdale and Dr Andy Sheppard, engage in a panel discussion about the future of biodiversity science in Australia:

You might like to read the concluding chapter of CSIRO’s Biodiversity Book to find out more about the scientific solutions that could help us address the big threats to Australia’s biodiversity.

And if you’ve been inspired to get more involved in the management of our biodiversity, there’s a lot you can do—even from your computer. Visit the Atlas of Living Australia to find out about volunteer opportunities.

You can find all the videos from our biodiversity series on our YouTube channel.


Mining and biodiversity: are they getting along?

Australia’s Biodiversity series – Part 11: Mining

Dolphin poking its head out of the water in the foreground and a ship in the background

Dolphin conservation is carried out to offset impacts of infrastructure development in Darwin Harbour. Image: Carol Palmer

Many people worry about the environmental impacts of mining, but as a society we have a growing demand for its products. Most Australian’s consider it worthwhile and a valuable industry for the nation’s prosperity, as our recent national survey indicates.

The direct impacts of mining on biodiversity are relatively limited compared with other major land uses—less than 1% of the Australian land area is used for mining, while 62%  is used for agriculture for example.

The greatest threats to biodiversity from mining come from the cumulative impacts of the infrastructure required for mining operations—roads, ports, pipelines, shipping etc. Science can help to assess any potential implications for biodiversity from mining development so that impacts can be better managed and rehabilitation and offsetting efforts can be more effective.

In the eleventh video of our Australia’s Biodiversity series, Dr Alan Andersen talks about the main impacts of mining on biodiversity and how these can be appropriately managed through processes like strategic regional assessments, use of bioindicators in rehabilitation, and biodiversity offsets:

To find out more about mining and biodiversity in Australia, you might like to read the corresponding chapter of CSIRO’s Biodiversity Book.

Last week’s video looked at the biodiversity in our inland water systems and how our approach to water management impacts ecosystem health. You can review it and the other videos in the series on our YouTube channel.


Water: we need it to live, and so does our wildlife

Australia’s Biodiversity series – Part 10: Inland waters

Even though it is one of the world’s most arid continents, Australia’s inland waters support a rich diversity of life.

Rivers, streams, wetlands, floodplains, lakes, underground aquifers—we’ve got them all and they all support native species.

A large brown and yellow frog

The New Holland water-holding frog. 94% of our frog species are found only in certain ecosystems – the highest rate of endemism among Australia’s vertebrate species. Image: Danial Stratford.

Biodiversity is enhanced by the wide variation in rainfall across the continent and the change in climate from the tropical north to the temperate southern regions. Life in Australia’s inland water ecosystems has had to adapt to the ‘boom and bust’ that comes from periods of both extreme dry and extreme wet.

Human development has had a dramatic impact on these ecosystems, particularly in the Murray Darling Basin and other areas in the southeast, as we use water for our cities and towns and for irrigated agriculture. These water uses are obviously of great benefit to the Australian population but the use of the water and the infrastructure associated with it can disrupt the natural flows of water and nutrients through inland water ecosystems, which native plants and animals depend on.

In the tenth video of our Australia’s Biodiversity series, Dr Carmel Pollino talks about Australia’s unique inland water ecosystems and how water can best be managed for the benefit of biodiversity and our communities:

To find out more about the biodiversity in our inland water ecosystems, you might like to read the corresponding chapter of CSIRO’s Biodiversity Book.

Last week’s video looked at the new ways science is attempting to understand the unknown biodiversity in our oceans. You can review it and the other videos in the series on our YouTube channel.


What’s in your porcini packet? You may find a new species … or three

By Nai Tran-Dinh, CSIRO and David Midgley, CSIRO

Mycologists – scientists who study fungi – estimate there are up to five million species of fungi on Earth. Of these, only about 2%, or 100,000 species, have been formally described. So where are the other 98% of fungi hiding?

At least three, it seems, were hiding in a supermarket packet of dried porcini mushrooms from China. Mycologists Bryn Dentinger and Laura Suz from the Royal Botanic Gardens in Kew, UK, used DNA sequencing to identify three new species in a packet of dried porcini mushrooms purchased from a supermarket, and report their findings in the journal PeerJ today.

The internal transcribed spacer (ITS) is a DNA region commonly used to identify fungi. (In fact, it’s been called the “universal DNA barcode marker for fungi”.) In their PeerJ paper, Dentinger and Suz compared previously published ITS sequences for porcini and discovered significant differences in three of their packet of dried mushrooms, enough to mark them as new species.

Their work also highlighted the use of modern DNA sequencing technologies for identifying species in food, and for monitoring foods for quality and adherence to international regulations, such as the Convention on Biological Diversity.

Fungi really are fascinating

Like an apple, a mushroom is the fruit of the fungus. It’s not the apple tree.

Porcini

Typical porcini (Boletus edulis var. clavipes) in its natural habitat. This is not one of the newly discovered species (which are only known from the dried remains in the packet).
Bryn Dentinger

Most of the fungus grows below the ground, in a vast network of root-like tubes called hyphae. How vast, you might ask? Well, in a case known as the “humongous fungus”, a single clone (individual) of the honey mushroom (Armillaria ostoyae) has been shown to cover more than 900 hectares in Malheur National Forest in Oregon, USA. Estimates place the age of this gigantic fungal network at more than 2,000 years.

In Australia, some of our fungi are a little more modest in size, though perhaps bigger than you might guess. Nicole Sawyer and John Cairney at the University of Western Sydney have estimated the size of individuals of the Australian Elegant Blue Webcap (Cortinarius rotundisporus) at more than 30m in diameter – about the size of tennis court.

Despite the impressive size of some species, new species of fungi don’t get the same recognition as a new species of mammal, bird or reptile. But discoveries of novel species are the new norm in modern mycology – a change being driven by advances in our ability to sequence DNA.

It’s very important to better understand fungi, as they underpin the terrestrial biology of Earth. They associate with the vast majority of plants in a symbiosis called mycorrhiza.

Living both within plant roots, and out in the soil, they gather nutrients for the plant, and protect it against diseases and water stress, enhancing plant growth in exchange for sugars the plant produces via photosynthesis.

Without their fungal assistants, plants as we know them would not exist. Other fungi are vital decomposers and return nutrients stored in organic matter to the soil. While the most fungi are beneficial, some fungi are devastating plant pathogens, while a small number of fungi can cause disease in humans such as ringworm, trichosporonosis or aspergillosis.

Close human relationships

Humans have also recruited an array of fungi to their cause. Products produced by fungi are used in medicine – many antibiotics come from fungi – and the production of a range of food products including soy sauce, blue cheese, bread, beer and wine.

New porcini dried

Some of the new porcini species reported in PeerJ today.
Bryn Dentinger

Numerous new fungi related to Malassezia (a yeast that causes dandruff in humans) have been found in marine subsurface sediments in the South China Sea by Chinese researchers from Zhongshan (Sun Yatsen) University, while scientists from the Woods Hole Oceanographic Institution in the US found the same Malassezia-like species from the Peru Trench in the Pacific Ocean.

The work in the Peru Trench used environmental RNA sequencing to guarantee that sequences observed were from environmental samples, and not contaminants from human skin.

Recent advances in modern DNA sequencing technology routinely yield millions of DNA fragments (reads) that can be quickly and accurately identified using classification tools. One such tool is the recently released Warcup ITS fungal identification set developed by CSIRO scientists in collaboration with the Ribosomal Database Project (RDP) and partners from the Western Illinois University and the Los Alamos National Laboratory in the US.

The Warcup ITS dataset allows identification, to species level, of thousands of ITS sequences within minutes.

The use of modern DNA technologies and classification tools may allow development of bioactive compounds for medicine, enhanced agricultural productivity, environmental damage repair, industrial applications such as biofuels and enzymes, along with food identification and potentially new food sources … sometimes in places you’d least expect.

The Conversation

The authors do not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article. They also have no relevant affiliations.

This article was originally published on The Conversation.
Read the original article.


A sea full of mysteries to be solved

Australia’s Biodiversity series – Part 9: Seas and coasts

Life originated in the oceans 3–5 billion years ago and even today 20 of the 33 animal phyla (the highest groupings within the animal kingdom) remain confined to the sea. That means that most life under the sea is like nothing we find on land.

An elephant seal with an electronic tag on its head

Sea creatures can also help us explore the oceans. Sea mammals can take sensors to parts of the ocean we’d never be able to go ourselves, like under Antarctic sea ice. Image: Chris Oosthuizen

Worldwide there are big gaps in our understanding of the oceans and the life within them. Our exploration of Australia’s marine biodiversity has been limited mostly to the margins of the continent, on the continental shelf and the upper continental slope. Even near the continent, some 50–70% of the species we’ve found in recent surveys have never before been seen by scientists.

New technology and equipment, like autonomous robotic vehicles and electronic tagging, as well as our brand new marine research vessel, RV Investigator, is allowing us to explore in ways we’ve never explored before and so we can begin to address those knowledge gaps.

In the ninth video of our Australia’s Biodiversity series, Dr Alan Butler and Dr Nic Bax talk about the unique habitats of the sea, the challenges it poses to exploration, and new tools and technologies helping us discover and manage the biodiversity it holds:

To find out more about discovering biodiversity in the ocean, you might like to read the corresponding chapter of CSIRO’s Biodiversity Book.

Last week’s video looked at the relationship between our cities and biodiversity. You can review it and the other videos in the series on our YouTube channel.


Can cities cater for our critters too?

Australia’s Biodiversity series – Part 8: Cities and towns

Cities are one of the great inventions of civilisation. They are centres of knowledge, invention and cultural change. But how good are they at supporting the local plants and animals?

Cities tend to have been built in areas of high biodiversity, with rich soil and permanent water supplies, and so there may be more species living in and around your city or town than you think. Simply punching your postcode into the Atlas of Living Australia will give you a list of everything that’s been recorded there.

Of course, the fact that there’s now a city on that land will have impacted species’ ability to persist there. The way we design and lay our cities out has an influence on how extensive that impact is, and will continue to be important as cities and populations grow.

Views of Canberra and New York City cityscapes

Canberra and New York City are at opposite ends of the urban density spectrum. But which is better for biodiversity? Image: Mark Lonsdale

Cities occupy just 2% of Earth’s surface but account for 75% of the resources consumed by humans. That sort of resource use represents one of the biggest challenges to the world’s biodiversity. But being centres of cultural change, cities also present many opportunities to engage people in supporting biodiversity conservation efforts.

In the eighth video of our Australia’s Biodiversity series, Dr Mark Lonsdale talks about the relationship between cities and biodiversity and some of the big ways cities can play a role in supporting our biodiversity in coming decades:

To find out more about the relationship between our cities and towns and biodiversity, you might like to read the corresponding chapter of CSIRO’s Biodiversity Book.

Last week’s video looked at agricultural landscapes and how they can be better managed to support biodiversity. You can review it and the other videos in the series on our YouTube channel.


Can we feed the world and save our species?

Australia’s Biodiversity series – Part 7: Farming, pastoralism and forestry

Australian agriculture provides food and fibre for millions of people in Australia and around the world, but it can come at a cost to our environment and biodiversity.

There is a range of intensities of primary production in Australia today. Hunting and gathering and use of fire to manipulate the abundance of native species is at the lowest end of the spectrum, then livestock grazing of native pastures, right through to complete replacement of native species for intensive cropping and forestry plantation (the latter requiring inputs in the way of fertilisers, machinery, chemicals etc.). The more intensive the production method, the more food and fibre can be produced per unit area, but with greater impact on biodiversity. Less intensive production methods provide opportunities for native species to coexist with production.

Better management of our agricultural landscapes can enhance biodiversity, and in turn, enhanced biodiversity can benefit agriculture through services like pollination and recycling nutrients in soils.

In the seventh video of our Australia’s Biodiversity series, Dr Sue McIntyre talks about the different intensities of agriculture in operation across Australia and what research is telling us about better managing practices to continue supporting biodiversity in those landscapes:

To find out more about managing agricultural landscapes for biodiversity, you might like to read the corresponding chapter of CSIRO’s Biodiversity Book.

Last week’s video looked at Indigenous perspectives on Australia’s biodiversity and its management. You can review it and the other videos in the series on our YouTube channel.


Follow

Get every new post delivered to your Inbox.

Join 3,622 other followers