Bees backpacking in Brazil

Bee with a backpack...of the sensor variety.

Bee with a backpack…of the sensor variety.

By Emma Pyers

How do bees in the Amazon jungle compare to those in Tasmania? They get up earlier, for a start.

Paulo de Souza and his team have been tracking bees in the two regions using tiny backpack sensors as part of our Swarm Sensing Project to gather biological and ecological data to improve honey bee health.

The tiny backpacks are just a quarter of a centimetre square and are fitted to the back of the bees.

“We have already attached the micro-sensors to the backs of thousands of bees in Tasmania and the Amazon and we’re using the same surveillance technologies to monitor what each bee is doing, giving us a new view on bees and how they interact with their environment,” Paulo said.

Graph: Daily distribution of bees in Brazil and Tasmania

Daily distribution of bees in Brazil and Tasmania (click for large version)

“Once we have captured this information, we’ll be able to model it. This will help us understand how to manage our landscapes in order to benefit insects like bees, as they play such a key role in our lives. For example, one third of the food we eat relies on bees for pollination, that’s a pretty generous free service these humble insects provide us!”

Early modelling has shown one notable difference between the bees in Tasmania and those in the Amazon; Amazon bees are up and about very early in the morning while Tassie bees prefer to wait until the day warms up before they leave the hive.

But finding out what time bees get out of bed is only a tiny part of what the research can show us. For example the research will also look at the impacts of agricultural pesticides on honey bees by monitoring insects that feed at sites with trace amounts of commonly used chemicals.


A global buzz in micro sensing

We’re working with the Vale Institute of Technology in Rio de Janeiro, Brazil, on micro-sensory technology and systems (read  more about what Vale is up to here).

Working with researchers across the globe has its unique challenges as well as its rewards, and it’s the physical challenges that have been the most interesting.

“As the Africanised honey bees were very aggressive, the hive was placed in an isolated area away from housing and domestic animals – and isolation meant working in densely vegetated areas,” Paulo explained.  “We had to clear a path to the hive and we wore fully protective bee clothing which was tough given the extreme humidity and heat.”

The Brazilian media got a taste of what it was like to work in these conditions, when they suited up to interview Paulo and our colleagues from the Vale Institute of Technology about their work

Pressure from the press

Pressure from the press

The collapse in global populations

Bee health is important globally however, honey bee populations around the world are in danger.

Colony Collapse Disorder (CCD) – a phenomenon in which worker bees from a colony abruptly disappear – and Varroa mite are two major problems facing bee populations globally. While these two problems haven’t appeared in Australia, there is a very real risk.  And what happens if it does? Catastrophe!

Check out this video where Peter Norris, Tasmanian beekeeper, describes his first hand experience with CCD while working in the United Kingdom.

So it’s a good thing our scientists, and their colleagues in Tassie and Brazil, are on the case.

To learn more about how we’re trying to save honey bees around the world tune into ABC Catalyst at 8pm tonight.

CSIRO’s Swarm Sensing Project is a partnership with the University of Tasmania and receives funding from Vale, a Global mining company.


Will robots ResQu our rainforests from weeds?

By Carrie Bengston

Want to go for a walk in a rainforest? Join us!

We push our way past vines tangled around tree limbs in the dark, multilayered forest.  As we walk, we’re aware that we’re the only people in this tranquil environment. But it’s a place that’s home to rare and unique birds like the cassowary, a fantastic collection of fungi, and unusual mammals like the tree kangaroo. We step across clear, freshwater creeks (plus or minus leeches) and we listen to leaves rustle in the canopy as a thunderstorm approaches, rumbling in the distance.

Our rainforests are precious and incredibly biodiverse. For example, the rainforests of Far North Queensland, which include the iconic Daintree, occupy less than 0.2 per cent of Australia’s land mass. Yet they support more than ten percent of its flora, 36 per cent of its mammals and 48 per cent of its birds. Rainforests are confined to small patches clustered mostly in inaccessible, mountainous regions along the tropical coast. It’s important we look after these amazing habitats. Unfortunately, a purple-leafed weed, Miconia calvescens, has escaped from its natural habitat overseas via introduction into Aussie gardens and nurseries (which has since been banned) and has made its way into our World Heritage rainforests.

Miconia calvescens

The miconia calvescens, image: Forest & Kim Starr

Purple is a great colour. Don’t get us wrong. But these purple weeds have no place in our rainforests as they compete viciously for space, and squeeze out our native plants. The Miconia menace is taking over the rainforests of Tahiti and other countries. We don’t want that happening here. So we’ve called on an unlikely ally to stop Miconia getting a roothold – robotic technology.

We’ve been participating in a research project, Project ResQu, to trial robot helicopters that could do some of the weed spotting people currently do. Weed spotters work on the ground pushing through dense forest or flying above in manned helicopters, but robots can do the job better and safer. We recently put that to the test.

UAV in flight

UAV in flight. Image: Stefan Hrabar

The robots did well. The robot helicopters, fitted with radar and special cameras and given quirky names like ‘Hotel Golf’, found several Miconia infestations missed by other methods of surveillance. Here’s how we did it.

Will robots save the rainforest? They just might.

About Project ResQu:

Project ResQu is a two-year, $7M project led by the Australian Research Centre for Aerospace Automation (ARCAA) in a collaborative project between the Queensland University of Technology (QUT), CSIRO, Boeing and Insitu Pacific with the support of the Queensland State Government Department of Science, Information Technology, Innovation and the Arts.

Media contact: Emma Pyers, 03 5227 5123, 0409 031 658, emma.pyers@csiro.au


Watch-bees on the job

How much are bees worth to you?

Well, did you know they earn an estimated $4-$6B for Australia every year? Another way to look at it is – what price would you place on cashews, almonds, macadamias, strawberries and avocadoes? Among many others, these crops rely on bees for pollination.  In fact, around one in three bites of the food we eat owe its existence to bees, which is why it is a concern to learn that bee populations around the world are in trouble.

Bees on a frame

Healthy bees at work

Enter Destructive Varroa

Varroa mite (Varroa destructor) is in all beekeeping countries except ours. These sesame-seed-sized mites attach themselves to bees and suck their haemolymph (insects’ version of blood), making the bee more vulnerable to disease. No country has been able to eradicate Varroa once it’s established.

Varroa has been implicated in collapse of bee colonies. Adult worker bees suddenly leave the hive, dying somewhere else. The colony then falls apart. The underlying cause is often unclear, but devastated hives often contain Varroa mite. This may only be a coincidence, but it’s another reason to keep Australia Varroa mite-free as long as possible. Colony collapse has become a major problem – particularly in the US.

The good news is we’re unaffected – so far. The bad news is that when (and it is when, not if) Varroa mite arrives in Australia, local bees haven’t been exposed to it, so they’re extremely susceptible. There have already been a couple of scares in 2012. Varroa-carrying bees were found living in the loading cranes of a ship berthed off Sydney.

Bee pupae infected with Varroa mite

Varroa mite on bee pupae

Australia is currently free of Varroa mite but not of Asian honey bees which is their natural host. We’re already on alert, which is why horticultural industries, the honeybee industry and the Australian Government created a National Bee Pest Surveillance Program, managed nationally by Plant Health Australia.

Unfortunately no amount of surveillance can guarantee pests are kept out, so an early warning system is necessary.

The most likely entry point for Varroa mite is through Australia’s east coast ports, especially from vessels from New Zealand and South-East Asia.

The National Bee Pest Surveillance Program now has 126 sentinel hives. These are hives of healthy European honey bees that are placed at high-risk locations, an average of six per location. These hives are tested every two months using mite-killing chemicals, to provide early detection for Varroa mites and another major honey bee pest, Tropilaelaps mites that could be carried by exotic bees on a ship or in the cargo. Samples of bees are taken from sentinel hives every two months.

But how do they know which ports to put the hives at? Enter data analytics.

The shipping news

Working out the best sites for the hives involved taking multiple data sets containing details on exotic bee interceptions, ships involved, ports of origin, destinations and types of cargo carried.

We used a technique called random effects modelling, a way of drawing out the relevant information when the precise characteristics of the members of the dataset– in this case the cargo, the last country of call and arrival port– are not all the same and difficult to quantify.

We started with shipping data. There is comprehensive information on those vessels that have arrived in Australia, when and from where. We matched this with records of exotic bee interceptions – sometimes on vessels, in machinery, or nesting on the outside of containers at ports.  We then collected maps and aerial pictures of all Australian ports, to produce models of potential bee habitats. To know what to put into the models, we had to find out how far bees can swarm (5km maximum for Asian honey bees and 2km for European honey bees). We also had to learn how long a vessel would need to be in port for bees to find a place to swarm to. If there isn’t enough time for scout bees to find a suitable site or a second set of bees to visit and ‘approve’ it, the colony will not swarm. That’s also assuming it has a queen and is a genuine swarm. This was not always possible to establish with confidence from the interception data.

Some ports with desert or industrial areas nearby ports were ruled out because they have no habitat suitable for honey bees that are within swarming range. This also ruled out ports where the berthing location is relatively distant from the coast.

Data were then assessed to establish what cargo came to the more ‘bee-hospitable’ ports, where the vessels arrived from and how long the voyage had been. Voyages of 300 days or longer were excluded on the basis that the bees wouldn’t survive a trip of that length.

The country of origin and type of cargo are also important considerations. Asian honey bees in particular like to nest in nooks in machinery which is subsequently shipped as cargo. These bees are less keen on – perhaps unsurprisingly – the barren hulls of empty vessels.

Asian honey bees

Asian honey bees

All this information and consideration have combined to produce a surveillance system that is likely to use resources effectively as possible and head off exotic and infected bees before they do any damage.

So, next time you’re enjoying a handful of almonds, spare a thought for the bees that pollinated it and for the data analysis that goes into keeping those bees healthy.


Mite as well call Australia home – the immigration success story of the redlegged earth mite

 

Picture bean plant damaged by redlegged earth mite

Redlegged earth mite damage on a faba bean

By Adam Harper

Whenever communities emigrate from far away, they do their best to adapt and succeed in their new environment. Some groups succeed better than others. One population of Australian immigrants has been particularly good at adapting – the rather aptly named Halotydeus destructor, more commonly known as the redlegged earth mite (RLEM for short).

These pinhead-sized pests emigrated from South Africa in the early part of last century. They’ve settled into their new home so well that they are now the most expensive pest for Australian grain growers, at least in southern Australia, causing losses of about $45 million a year. An infestation is a triple threat – it can kill seedlings, reduce productivity and quality of older plants and lower the seed yield in spring. Pesticide treatment for RLEM costs about $20.5 million a year.

Picture of redlegged earth mite

The redlegged earth mite has adapted well to Australian conditions

Not only are they the most expensive pest, they are also showing resistance to some insecticides. What’s more, they’re expanding their range into climatic regions in Australia different from the ones they occupied in their native South Africa. We don’t yet know how far they are capable of extending their range. All these factors mean RLEM could spell disaster for grain growers. Fortunately University of Melbourne PhD student Matthew Hill recently completed his research on this problem.

In collaboration with his supervisors at The University of Melbourne and CSIRO, Matt found how the distribution of RLEM had changed in Australia and what this may mean for grain growers. He used historical data collected on RLEM to show how it is expanding its distribution. His research will help growers not affected by RLEM understand the risks RLEM could pose.

RLEM was first found in WA in 1917. By the 1920s it had spread to Victoria. Its ability to use a wide range of host plants (grain crops, pasture species, clover, and many broad-leaved weeds) meant that it spread easily and quickly. Matthew compiled three data sets, showing the recorded distribution of RLEM in its native South Africa, its invasive range in Australia in the 1960s, and its present-day range in Australia. He used these to develop models describing the environmental conditions this mite experienced in each case. His models show that RLEM has expanded beyond the range predicted by its distribution in South Africa. Today, RLEM can be found in hotter and drier inland regions of Australia.

Several factors may have helped RLEM expand into inland Australia. First, changing farming practices have meant a greater uptake of minimum or no tillage systems, as well as an increase in area under irrigation in the eastern states. Second, climate changes such as a small increase in winter rainfall may have also helped. Third, and perhaps most worryingly, RLEM may have undergone an adaptive genetic shift.

That means Australian RLEM populations may have different physiological traits that make them more tolerant to these new dry and hot environments. When Matthew compared mites from Australia and South Africa, the Australian mites were able to move around at higher temperatures than those from South Africa. Australian mites also recover more quickly from damaging cold temperatures. This shows that RLEM has adapted well to its new Australian home. However, the question still remains; how far is it capable of expanding its distribution?

Matt Hill gathering samples of mites in southern NSW

Matt Hill sampling mites from roadside vegetation in agricultural areas of southern NSW

Dr Garry McDonald at the University of Melbourne has been developing models that predict the risk of a RLEM outbreak each season, based on the weather patterns in a region. RLEMs are generally active in the cool, wet part of the year. Eggs laid in spring go into a suspended growth state over summer to protect them from drying out. Identifying the weather conditions that trigger egg hatching as the autumn weather cools is a crucial part of Garry’s models. Discovering these triggers will help growers more accurately predict when to watch out for RLEM. To discover exactly what the triggers are, Garry compiled data from various research trials conducted by state departments, CSIRO and universities over the past 50 years. He is now using this data to tease out the climate triggers for egg hatching. So far he has found that rainfall, then temperature, act in concert to regulate egg development and hatching.

Interestingly, the triggers in the western region appear to be different from those in the southern-eastern region. This supports some of Matthew’s findings that suggest there may be un-documented differences between populations in the western and southern-eastern regions. Once these triggers are validated across a range of sites, Garry can determine if they will be useful for growers currently managing RLEM, and whether different management strategies should be developed for the two regions.

Current research is aimed at giving growers advance notice of the risk or severity of an RLEM outbreak. However, to confidently predict outbreak risk, the factors that influence RLEM at both the regional and field levels need to be combined.

The work was funded by The University of Melbourne, CSIRO and the Grains Research and Development Corporation, and conducted as part of the National Invertebrate Pest Initiative.

For further information please contact Dr Nancy Schellhorn NIPI Leader nancy.schellhorn@csiro.au


Getting crazy ants under control

By Emily Lehmann

One of the world’s most invasive pests – the yellow crazy ant – is anything but a small problem in Australia’s top end.

Called ‘crazy’ for their erratic and frantic movements, these unwelcome critters were accidentally introduced into Australia and are a threat to native wildlife including other ant species.

Their capacity for destruction has been most devastatingly felt on Christmas Island where crazy ant supercolonies have formed and killed more than 20 million red crabs.

That’s why we have been leading efforts to control and eradicate the pest ant species across northern Australia.

We're keeping these crazy critters in check.
We’re keeping these crazy critters in check.

As part of this mission, we’ve helped local company Yolngu Business Enterprises (YBE2) join the effort by developing a new service in crazy ant control.

Operating in north-east Arnhem Land, YBE2 is contracted to undertake rehabilitation work at Rio Tinto Alcan’s Gove Bauxite mine. The Gove area is ridden with yellow crazy ants.

Crazy ant infestations pose a significant challenge to mining and effective rehabilitation, as digging up the earth risks spreading them. The site needs to be continually monitored and treated to clear it of any colonies.

Through the Researchers in Business program, our ant ecologist Dr Ben Hoffmann worked with the YBE2 team on the ground to develop protocols to monitor the land, and identify and collect data to accurately map ant infestations using a GPS system.

About 200 hectares of infested area was mapped by YBE2 staff and underwent treatment. Since the project ended, a further 200 hectares has been mapped for treatment later this year.

The team gained valuable data on the impact the ants and treatments have on the local environment, which could be used to improve YBE2’s rehabilitation processes.

This research and development has given YBE2 the capacity to monitor and capture data from the land, secured them a contract to control crazy ants on the mine site and will potentially open up new business opportunities.

It’s also putting a halt to the spread of yellow crazy ants, helping to protect the Australian environment.

Read more about our work with small and medium-sized businesses or our biosecurity research.


Avian influenza – why it’s not going away

Where do outbreaks of avian influenza come from? Image: Flickr/cskk

Where do outbreaks of avian influenza come from? Image: Flickr/cskk

By Frank Wong, Agent Characterisation Team Leader and Peter Daniels, Australian Animal Health Laboratory Assistant Director 

While Hong Kong has just reported its first case of the deadly H7N9 bird flu indicating that the virus may be spreading across China, Australia is reporting an egg shortage over Christmas as a result of the recent H7N2 cases in NSW. So how does the virus keep reinventing itself to cause issues across the world?

As over 70 per cent of emerging infectious diseases in people originate in animals, whenever we hear of a new virus outbreak we jump to find the source.

That’s not to vilify the animal species responsible, but to enable scientists to characterise the virus, track its path, assess its level of virulence and its potential impact on animal and human populations. While some recent viruses such as SARS and MERS have been tracked to bats, in the case of avian influenza in people, the source is birds.

Finding the source of influenza

As well as “bird flu” in the past there have also been reports of “swine flu”. In fact both these flu viruses belong to a group known as influenza A, and all influenza A viruses originally come from wild water fowl.

These complex viruses have evolved over time to become infectious to domestic birds such as farmed and back-yard poultry, pigs, horses, other domestic and wild animals and of course people. Cross-species transmissions can occur from time to time.

Viruses that infect more than one species frequently have natural hosts in which they replicate but do not cause obvious disease. The pathogen and host exist in harmony with each other and examples include Hendra, Nipah and SARS viruses in bats, Hanta viruses in rodents and influenza viruses in wild water birds.

On the whole, naturally occurring avian influenza (AI) viruses do not cause disease in wild bird populations. However, if wild water fowl are shedding virus and come in contact with domestic poultry, their food or water, either directly or via their excretions, AI can enter a poultry farm.

Once on a farm, the virus can be transmitted and maintained in the poultry in low pathogenic form, or certain strains can mutate to become highly pathogenic avian influenza (HPAI) in the new host with a high fatality rate.

In the case of farmed chickens, the close contact between these birds can lead to rapid transmission and in some countries infection has jumped from the poultry to other species such as pigs and humans.

Influenza virus evolution

There are a range of different influenza virus subtypes differentiated by the external proteins of the virus: haemagglutinin (H) and neuraminidase (N). It is generally recognised there are 16 different H types and 9 different N types.

Only some viruses of the H7 and H5 subtypes progress to be highly pathogenic in poultry through the process of mutation. Other H types may cause low-level disease but do not show the highly pathogenic mutations that can occur with H7 and H5 strains.

Avian influenza is an RNA virus with eight segments to its genome which makes it prone to re-assortment. When two or more influenza strains infect a host the genetic material can mix thereby producing a new strain or genotype. These genotypes can be tracked over time and the lineage identified for each of the genomic segments.

The major H7 virus lineages can be traced to either one of Europe and Asia (Eurasia), Australia, or Nth American origins. On this basis, gene sequencing of virus from an influenza outbreak can be used to determine whether it is likely to be an exotic strain newly introduced from another region, or derived from viruses already circulating in the local environment.

The Avian Influenza situation in Australia

While Australian water fowl remain predominantly local to our continent, there are many wild migratory birds such as shore birds and waders that travel across the world to share Australia’s waterways. A few of these migratory birds could potentially infect local wild water fowl.

The devastating H5N1 highly pathogenic avian influenza strain has not ever been detected in either Australian wild or domesticated birds. All previous highly pathogenic avian influenza outbreaks in Australian poultry have been caused by H7 viruses.

Low pathogenic viruses with an H7 haemagglutinin similar to that found in the current H7N2 outbreak and the earlier H7N7 outbreak in NSW have been detected in past unrelated samples from Australian wild water fowl.

Genetic tracking gives support to the belief that outbreaks such as the October 2013 H7N2 are the result of transmission of a low pathogenic virus from a wild bird reservoir to the poultry farm, where it then turned highly pathogenic as it spread among the farmed chickens.

Both the 2012 H7N7 and 2013 H7N2 are of Australian H7 lineage which has been circulating naturally here for many years.

Predictive genetic analysis

Genetic markers have been identified on H5 and H7 viruses that are associated with their potential to cause disease in people. The H7N9 virus in China in February 2013, though a low pathogenic avian virus, has certain genetic markers that are believed to be associated with its being more transmissible to and pathogenic in mammalian hosts.

Unlike the Chinese H7N9, the Australian H7N2 and H7N7 strains are more typical avian influenza A viruses that do not contain the same genetic markers that are a concern for disease in people.

The importance of biosecurity

Avian influenza will remain prevalent around the world so long as there are migratory birds. Biosecurity measures can mitigate the risk but whilst poultry, their food or water remain in potential contact with wild birds there remains a low possibility of the poultry becoming infected.

Biosecurity at the farm level is therefore vitally important to mitigate the risk of AI infection and biosecurity precautions to prevent disease outbreaks should be an everyday practice for all bird owners, whether large scale or back-yard poultry farmers.

This article was originally published at The Conversation. Read the original article.


Mega-pest worms its way into Brazil

Helicoverpa armigera_5

By Wee Tek Tay, Research Scientist, CSIRO Biosecurity Flagship

We often speak of the risks of new invasions in our increasingly interconnected world, and stress the need for a strong and reliable biosecurity system to safeguard our borders.

As global trading and markets increase, it’s essential to develop our ability to detect incursions using new and innovative surveillance techniques combined with rapid identification capabilities.  This is important because Incursions by exotic pests and diseases have the potential to seriously impact Australia’s people, agricultural industries and unique environment.

And right now, a team of Australian and international scientists are working closely with colleagues in Brazil as one of the most destructive pests known to agriculture – the cotton bollworm (Helicoverpa armigera) – worms its way into Brazilian agricultural fields.

Helicoverpa armigera has long been recognised as a serious biosecurity threat to the Americas, where it has the potential to establish across the South and North American continent with far greater anticipated potential economic loss to corn and cotton than the closely related Helicoverpa zea which is endemic to the Americas.

Incredibly, despite being intercepted at US Ports of Entry a staggering 4431 times since 1985, this mega-pest had not been previously reported to take hold on the American continents.

In Australia, Asia, Africa and Europe, where cotton bollworm is considered native, the damage it causes is estimated to cost $US 2 billion each year. In the last two growing seasons, high infestations of Helicoverpa species larvae were found in different regions of Brazil, resulting in substantial economic losses of up to 10 billion Brazilian Reals ($US 4.4 billion).

A cotton bollworm larvae decimating a cob of corn

A cotton bollworm larvae decimating a cob of corn

At first it was assumed that the damage was being caused by Helicoverpa zea, because the cotton bollworm had never previously been detected within the country. However, as the scale of spread and destruction was monitored, the Brazilian scientists knew that something was different and suspected that maybe the dreaded incursion of Helicoverpa armigera had indeed begun. At this point, Brazilian scientists from the Mato Grosso Cotton Institute approached CSIRO researchers to assist in the careful identification of the species attacking their crops.

Our scientists, together with French and Indian colleagues from CIRAD and IRD in France and the Indian Council of Agricultural Research used evolutionary and population genetics to confirm that the cotton bollworm has now successfully invaded Brazil.

Along with the confirmation that the Brazilians are indeed dealing with a new incursion of a serious exotic pest, the international team led by scientists from the CSIRO Biosecurity Flagship and Matto Grosso Cotton Institute is providing further vital data that will assist Brazil to manage this new menace.

The next steps for the research team are to investigate where the moth originated, where they are currently distributed, its spread across the South American continent, and the incidence of resistance to key pesticides. This information, coupled with CSIRO’s extensive expertise in insecticide resistance management will assist Brazil to develop effective strategies to manage this mega-pest.

You can read the full research paper at PLOS ONE.


For media enquiries contact Emma Pyers: +61 3 5227 5123, emma.pyers@csiro.au


Follow

Get every new post delivered to your Inbox.

Join 4,234 other followers