New weapon against deadly Hendra virus

a micriscopic image of Hendra virus - bright organge cellular shape encapsulated in bright blue ring on yellow background

Electron micrograph of Hendra virus.

Last week Queensland’s Department of Heath announced they will soon begin testing a human antibody treatment against the deadly Hendra virus with the help of humans.

‘Hendra’ is a potentially fatal virus that can cause disease and death in horses and, occasionally, people. The virus is found in flying foxes, which are interestingly naturally immune to it.

The announcement of human trials is particularly exciting for us because of our intimate history with this virus and our involvement in the development of the monoclonal antibody in question – m102.4.

Hendra virus first came into the spotlight in 1994, when Queensland horse trainer Vic Rail, his stable hand and many of his horses, became ill to a mystery disease. Working with the then Queensland Department of Primary Industries (QDPI) our crack diagnostic team isolated and identified the virus, naming it Hendra after the Brisbane suburb where the outbreak occurred.

medium close shot of grey horse with neck over a wire fence

The Australian Veterinary Association recommends that all horses in Australia are vaccinated against the Hendra virus.

Sadly Vic and 14 of his horses succumbed to the virus, and since then several more outbreaks have occurred in horses in both Queensland and New South Wales. Of the seven human Hendra virus cases in Queensland, four people have sadly lost their lives.

Fast forward 19 years from the initial discovery and we have the development of the Equivac® HeV, the world’s first commercially available Hendra virus vaccine for horses – an achievement that was the culmination of a scientific and collaborative journey.

We have proven that this vaccine protects horses from a lethal exposure of the Hendra virus six months post vaccination, but what about protecting the health of people living and working around these beautiful animals?

The recent development of the ‘seek and destroy’ human monoclonal antibody known as m102.4 was truly a global effort. Our scientists were instrumental in the preliminary in vitro and in vivo (animal studies) work undertaken at the sophisticated high containment facilities at the Australian Animal Health Laboratory (AAHL) and provided critical expertise on the Hendra virus at the highest level of biosafety.

The laboratory-produced molecule works by attaching itself to the Hendra virus, preventing it from causing an infection.

The purpose of administering the monoclonal antibody is to treat Hendra virus infection in people and to improve the survival rate of those who have come in contact with infected horses. Although m102.4 has already been used on compassionate grounds to treat eleven people, ten of whom survived, no formal human safety trials have yet been undertaken. This is where the volunteers come in.

two female scientists conducting experiment in lab, fully suited in fully enlcosed biocontainment suits

Australian Animal Health Laboratory (AAHL) has been actively involved and has worked closely with QDPI and Queensland Health in each recorded Hendra virus incident since it first emerged in 1994.

Queensland’s Department of Health is seeking local volunteers for phase 1 safety trials of m102.4 which will be run at the Q-Pharm clinics at QIMR Berghofer Medical Research Institute under the supervision of Princess Alexandra Hospital’s respected Hendra virus specialist Dr Geoffrey Playford. You can find out more about the trial here.

The m102.4 was developed by Dr. Chris Broder at the Uniformed Services University of the Health Sciences, Maryland USA. Queensland Health has further developed the antibody (with funding from Australian Institute for Bioengineering and Nanotechnology) by purifying and making safer for human use. Queensland Health has developed batches of m102.4 to ensure sufficient supply for compassionate use. 


Eureka, they’ve done it

Winners on stage

All the winners take to the stage at the ‘Oscars of Australian science’.

More than 2 200 years ago, legend has it, Archimedes got into a bath and had a lightbulb moment. He worked out that you could use the amount of water it displaces to measure the volume of an irregularly-shaped object. He was supposedly so excited about this that he jumped out, and ran, dripping wet and naked, down the street yelling ‘Eureka!’ (Ancient Greek for ‘I’ve found it’).

This story might not be entirely true, even though it deserves to be. But something that is unquestionably true is that several of our peeps had their very own Eureka moment, winning an Australian Museum Eureka Award, while fully clothed.

Here’s what they did to earn it.

WUE Initiative team (James Hunt, John Kirkegaard, CSIRO and Stuart Kearns, GRDC)
Department of Agriculture Landcare Eureka Prize for Sustainable Agriculture.

Winners on stage

WUE Initiative team accepting their award.

One of the biggest limiting factors for Australian agriculture is water. CSIRO and the Grains Research Development Corporation have been working on a five-year research project – the WUE Initiative – to increase water use efficiency in grain farming.

The results showed that it’s possible to a significantly improve water use efficiency in the southern and western growing regions, demonstrating an increase in the long term average winter crop yield without increasing input costs, and lifting average Australian wheat yield by around 25 per cent across all regions.

Two thirds of the yield gains from improved WUE come from pre-crop management.

Watch a rundown of their work.

Hendra Virus Research Team
Australian Infectious Diseases Research Centre Eureka Prize for Infectious Diseases Research

Winners on stage

The Hendra team accepting their award.

Well, what can we say? Horses and their owners all over Australia are very, very grateful for Equivac® HeV. This vaccine was the culmination of years of painstaking work by the Hendra Virus Research Team. It was also a novel approach to preventing a disease that kills humans – developing a vaccine for the horses that pass it on to humans, and who are also vulnerable to it. Hendra Virus has killed four out of the seven people it has infected – and with the help of this vaccine, they might be the last.

Watch the video about what the team have achieved or get a rundown on Hendra on our website.

Mark Talbot
Science Photography Prize

Microscopic image of wheat

Wheat through the looking glass.

Mark is a microscopist in CSIRO’s Bioimaging & Plant Development unit. He has developed a technique using a scanning electron microscope, to look deeper into plant cell tissues. His images speak for themselves.

Listen to Mark explain his magic.

We’d also like to congratulate the other CSIRO finalist at the Eureka’s last night:

The AIBL Research Team (CSIRO Lead Scientist Lance Macaulay)
University of New South Wales Eureka Prize for Excellence in Interdisciplinary Scientific Research

This – the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing – is a truly massive multidisciplinary undertaking. It’s a long-term study to discover which are the biomarkers, cognitive characteristics, and health and lifestyle factors that determine whether a person will develop symptomatic Alzheimer’s Disease. It has more than a thousand participants, and is now showing positive results both in detecting biomarkers and developing diagnostic tests.

Watch a short clip about AIBL or read about what curry and Alzheimer’s have to do with each other.

Dr Terence Speed.

And finally, a congratulations to the winner of the CSIRO Leadership in Science award, Professor Terence Speed from the Walter and Eliza Hall Institute of Medical Research.

At the Institute, the team that Terry leads uses computational mathematics to help researchers interpret massive amounts of experimental data.

Terry’s extraordinary leadership in the field extends well beyond the walls of the Institute. His techniques for improved DNA data analysis are distributed free-of-charge and used by thousands of researchers around the world. He is one of the world’s most cited scientists—not only in mathematics, but in computer science, biology and biochemistry.

Read more on Terry’s work at WEHI on the Australian Museum website.

Congratulations to all the finalists and winners of this year’s Eureka Prizes. Archimedes would be proud.

How to stop an epidemic

By Linfa Wang and Nola Wilkinson

Throughout history, infectious diseases have arisen unexpectedly and swept through human populations with catastrophic effects, like the Black Death and syphilis. We still face health threats today from diseases like AIDS, SARS and Hendra  – though we don’t yet have a daily disease forecast like this one:

Most emerging infectious diseases come from wild animals which can carry the infection without life-threatening results. But when these diseases infect humans, the consequences can be fatal.

More and more health professionals are recognising that the health of humans and wild and domestic animals is linked, both subtly and inextricably. If the role of rats as disease carriers had been understood in medieval times, plague might not have spread so widely.

Up close and personal: a microscopic view of the Hendra virus in bat cells.

Up close and personal: a microscopic view of the Hendra virus in bat cells.

In recent times transmission of diseases from animals to humans has had devastating effects, such as the twentieth century pandemics caused by HIV (which came from African chimpanzees) and influenza (Spanish flu is likely to have travelled from birds to humans). Recently, our research team found that bats are a natural reservoir for lethal viruses including Hendra, Ebola and SARS.

We’re addressing these emerging threats to human health in our One Health research initiative. By looking at how viruses interact with their human and animal hosts, we’re developing tools for the diagnosis, surveillance and prevention of these diseases. Our research is focused on the development of new vaccines, anti-viral therapeutics and disease-resistant animals.

For instance, in 2012 we launched the Equivac vaccine, which protects horses from infection and thus prevents transmission of Hendra virus from horses to humans. Vaccines can block the transmission of infection, regardless of whether humans or animals are vaccinated.

Linfa Wang

Linfa Wang and his team are helping to prevent the spread of infectious disease between animals and humans.

We’re also working on potential therapeutic agents like monoclonal antibodies which are administered after infection, as well as anti-viral drugs which can either block entry of the virus to the cell and prevent the virus from replicating or prevent its maturation and release from infected cells.

These developments can help break the chain of virus transmission and limit the impact of new diseases in our closely interconnected and highly mobile world.

Learn more about our work in animal health.

Defending ag from disease

Photo of the exterior of the Australian Animal Health Laboratory

The Australian Animal Health Laboratory in Geelong, Victoria

On-call 24 hours a day, seven days a week, diagnostic scientists at CSIRO are ready to respond should an emergency disease outbreak occur.

They could test 10,000 samples per day in an emergency, but as standard delivery, CSIRO scientists at Australian Animal Health Laboratory (AAHL) in Geelong, Victoria, test more than 45,000 samples for 55 terrestrial and 40 aquatic animal diseases every year.

Luckily, Australia is relatively free of many animal and human diseases found in other parts of the world, such as foot and mouth disease (FMD) and Nipah virus.

However, new infectious diseases, such as new strains of avian influenza, pose a constant threat to the health and wellbeing of animals and humans and pose a risk to Australia’s environment, industries and trade.

According to AAHL’s director Dr Kurt Zuelke, researchers are focused on reducing the threats of exotic and emerging animal diseases and, for example, are on standby with over 650 different tests covering a diverse range of animal species. “AAHL researches diseases of national importance found in livestock, aquaculture animals and wildlife, including those that can pass from animals to people,” Dr Zuelke said. “Our scientists are a front-line defence who help protect the country’s billion dollar livestock and aquaculture industries from disease threats on a daily basis.”

They play this defence role through performing diagnoses, establishing surveillance to monitor movements and emergences and if required, responding to animal disease emergencies. Better understanding diseases to develop diagnostic tests, vaccines and treatments is also crucial and CSIRO AAHL scientists lead the world on bat and insect-borne disease research. This is important for animal and human health as bats and insects are natural reserviours of a range of viruses and cause many of the world’s infectious diseases in both animals and humans.

Malaria and dengue, for example, are harmless to mosquitoes; blue tongue virus is harmless to midges; and Hendra, Nipah, and Severe Acute Respiratory Syndrome (SARS) viruses are harmless to bats – but all can be lethal to humans. AAHL also helps to train veterinarians in other countries to reduce the disease risks to Australia and is an official collaborating centre for capacity building in Southeast Asia. Recently, teams have visited Vietnam, Cambodia and Laos to train local veterinarians in disease diagnosis and testing techniques in their efforts to control and eradicate diseases such as FMD, classical swine fever and avian influenza. Importantly, this international work means Australia is more prepared with better threat assessments, surveillance and management options for many foreign diseases.

This article originally appeared in our 16 May Rural Press insert (pdf).

You can see what else we’ve been up to in our Rural Press Inserts Archive.

Preventing a pathway for pathogens

Part of the Biosecurity Series

By guest blogger Professor Peter Doherty

Photo of the tail of three planes

Image: caribb/Flickr

It’s no big secret that we’re citizens of an increasingly globalized planet where ideas, information, goods and services get around very fast. One of the downsides of this brave new world is that the same is true for pests and pathogens.

The security services, customs officers and quarantine regulations/officials protect Australia from such invasions as much as possible, although given the volume of trade and human movement, stopping bad things at the borders can only be part of any effective strategy.

There’s also a need for continual environmental monitoring to make sure that nothing dangerous slips through which could compromise Australia’s agricultural industries, wildlife and natural environments.

When it comes to biodefence against invading viruses, bacteria, insects, plants, marine parasites (on the hulls of ships) and so forth, we have layers of operation that function both at the Federal and State level.

This is, of course, where the wonderful high security CSIRO Australian Animal Health Laboratory (AAHL) comes into its own, providing the essential diagnostic tools and facilities for safe studies of deadly viruses in animals that are unique to the South-east Asian region.

Photo of the exterior of the Australian Animal Health Laboratory

The Australian Animal Health Laboratory in Geelong, Victoria

Apart from its service to the veterinary world, AAHL has also pioneered studies of bat-borne viruses like Hendra and Nipah (active to the North-West of Australia) that can transmit to people from infected horses and pigs respectively. These are classic cases of the “One Health” view CSIRO takes that stresses the intimate interplay between animal disease and human disease. Apart from the Henipaviruses, AAHL also has the facilities that allow CSIRO researchers to study the avian influenza A viruses, that are a looming threat to both domestic poultry and people.

An artificially coloured electron micrograph of the new-SARS like virus – now known as the Middle East Respiratory Syndrome (MERS) – which has caused an ongoing outbreak of respiratory disease and has spread from the Middle East to the United Kingdom, Germany, France, Italy and Tunisia.

An artificially coloured electron micrograph of the new-SARS like virus – now known as the Middle East Respiratory Syndrome (MERS) – which has caused an ongoing outbreak of respiratory disease and has spread from the Middle East to the United Kingdom, Germany, France, Italy and Tunisia. (click for full size image)

The new CSIRO Biosecurity Flagship pulls together research capability from across CSIRO together with a broad range of collaborating centres and groups. Sharing information is vital for such activities.  Clearly, Australia cannot afford to have “silos” and artificial barriers that in any sense compromise our biological security. Of ongoing concern are the hi-path variants of the avian influenza H5N1 viruses that continue to circulate in wild and domestic birds (and occasionally infect and kill people) in the countries to the north-west of Australia. While we’ve avoided that particular threat so far, the situation requires constant monitoring.

Another threat is the recently emerged H7N9 avian influenza virus and MERS, a novel coronavirus in the Middle East.

I’ve said nothing about plant, insect and fish pathogens, but there are many diseases of key species, such as bees, trout and salmon that we have so far managed to keep at bay.

The new CSIRO Biosecurity Flagship is a great step in the right direction, and we need to continue doing all that we possibly can to ensure the long-term health and wellbeing of all the life forms that inhabit our extraordinary and unique country.

Join the Conversation: #bflaunch

About the Author

Photo of Peter Doherty

Peter Doherty trained initially as a veterinarian and shared the 1996 Nobel Prize for Physiology or Medicine for discoveries concerning our immune defence against viruses. He published the non-fiction book “Sentinel Chickens: What Birds Tell Us About our Health and our World” in 2012, and his new book “Pandemics: What Everyone Needs to Know” will be available in Australia from October.

Follow Peter on twitter: @ProfPCDoherty

Human ‘spillover hosts’ sounds like the plot for a Sci-Fi movie

Part of the Biosecurity Series

By John Lowenthal and Andrew Bean

Zoonoses are diseases that have the ability to spread from animals to people, and they include some very well known diseases such as tuberculosis, flu and rabies, as well as some less familiar newcomers such as the Nipah and Melaka viruses.

Electron micrograph image of H7N9 Avian Influenza Virus

Mug shot of a one of the world’s new deadly viruses, A(H7N9).The four blobs in this electron micrograph are the virus.

In recent times zoonoses have accounted for more than 70 per cent of all emerging diseases, including H7N9 and H5N1 avian influenza, SARS, and MERS. What’s interesting is that a great deal of these zoonotic viruses that now pose a problem for humans appear to originate in either bats or poultry.

This highlights our need to understand not just what is happening in the human, but also what is happening in the animal.  Wild animals such as bats and migratory water birds are the natural ‘reservoir’ hosts for many zoonotic infections and little is known about how they carry these viruses without showing signs of disease.

Other animals, including horses, pigs, chickens and even people are ‘spillover’ hosts, meaning they are highly susceptible to these viruses, and infection is usually deadly.

The recent growth and geographic expansion of human populations and the advance of agriculture into wildlife habitats has meant that now, more than ever, there is a greater risk of emerging infectious diseases being transmitted to people from wild and domesticated animals.

In addition, the impact of climate change has resulted in disturbances in eco-systems and a re-distribution of disease hosts and carriers.  Increased global travel means a greater likelihood that new infectious agents will rapidly spread amongst the human population.Infographic of recently emerged infectious diseases

The World Health Organization has warned that the source of the next human pandemic is likely to be zoonotic, and that wildlife is a prime culprit. While the current list of known emerging infectious diseases is a major concern, it is the unknown virus lurking out there, with a potential for efficient human to human transmission that may pose the biggest pandemic threat.

A rapidly spreading lethal airborne zoonotic virus would, of course, be a major concern. You may remember the 2011 movie Contagion, which showed a fast-moving epidemic and the struggle to find a cure and control the panic. The ABC’s Catalyst story Virus Hunters also demonstrates the threat of quickly spreading diseases, and looks at the research our scientists do in the high containment facilities at the Australian Animal Health Laboratory.

If we want to fight these emerging threats and come out on top, we need to take a different approach to what we have done in the past and integrate medical, veterinary, ecological and environmental research.

This is what we refer to as the One Health approach – a combined approach to animal, human and environmental health, and the idea that we can all benefit from working together to value and solve the health problems of the world and reduce the risk of the next pandemic.

We believe it’s important to study and compare the disease in both the natural and spillover hosts. For example, understanding the differences between the immune systems of domesticated and wild animal hosts and comparing them to people is crucial for identifying the underlying disease mechanisms involved in zoonotic infections, and for developing new strategies for disrupting their transmission to humans.

This has important implications for predicting, preventing and controlling spillover events, and for the development of new therapeutics, vaccines and diagnostics.

Photo of the exterior of the Australian Animal Health Laboratory

The Australian Animal Health Laboratory in Geelong, Victoria

Improving knowledge, prevention and treatment of zoonoses is the focus of the One Health research that we’re undertaking with our national and international partners, and within our unique high containment facility at AAHL– the world’s most sophisticated high containment facility. Focusing our research efforts in this area will assist in facilitating the development and application of effective and sustainable community health strategies. There is a growing view that a One Health approach will be critically important for our preparedness for the next zoonotic pandemic.

Join the Conversation: #bflaunch

About the Authors

 Photo of John LowenthalJohn Lowenthal is Theme Leader for A One-Health approach to Emerging Infectious Diseases, CSIRO Biosecurity Flagship

John’s research is in the area of veterinary health and immunology, including studying the innate immune responses to viral diseases, assessing the ability of immune modulators such as cytokines to enhance resistance to disease and improve vaccine efficacy, using RNA interference to modulate disease-resistance, development of novel therapeutics for zoonotic viruses (H5N1 flu, Hendra virus) and the development of disease-resistant animals.

Photo of Andrew Bean

Andrew Bean is Stream Leader for Animal Biosecurity, CSIRO Biosecurity Flagship.

Andrew is an immunologist working to improve animal and human health with a ‘One Health’ approach. He joined CSIRO’s Australian Animal Health Laboratory in 1998 and the emphasis of his work is now on the innate immune response and the therapeutic and immuno-enhancing qualities of cytokines with the potential to improve health. His current research areas include avian influenza, Hendra virus, immune molecules and receptors, developing and assessing antiviral therapy, vaccines and adjuvants and therapeutics.

Our role protecting Aussies from the scary stuff

Part of the Biosecurity Series

By Gary Fitt, Director of CSIRO’s Biosecurity Flagship

When our biosecurity scientists introduce themselves to people outside the organisation and say their job is to help to protect Australia from nasty pests and diseases, they’re normally met with a puzzled expression. Soon the puzzlement turns to awe, and is followed by questions like ‘You mean you get to wear those big suits like Dustin Hoffman in the Hollywood thriller Outbreak?’

While some of our scientists work in high containment laboratories, kitted out in special protective ‘space suits’ to research deadly diseases, our work in biosecurity is much broader.

Scientists in orange high containment suits inside lab

Our scientists working in the high containment area at the Australian Animal Health Laboratory in Geelong

Biosecurity threats extend beyond infectious diseases to include weeds, invasive animals and insects. These all have the potential to devastate our crops, livestock and farming profits, our environment and even human health.

Historically, Australia’s strong quarantine measures and geographic isolation have protected us from some of the most serious impacts posed by exotic pests and diseases circulating around the world, but the movement of plants, animals and people across the globe and a changing climate are placing pressure on Australia’s future ability to protect itself from exotic pest and disease threats.

To address these challenges, we’ve reorganised our biosecurity related research activities into our new Biosecurity Flagship (you can find the full details in the brochure) to bring scale and connectivity to help Australia prepare for and prevent the spread and impacts of pests and diseases.

What’s a Flagship you ask? In a nut-shell it’s a large-scale research program which uses world-class science to deliver powerful solutions that tackle Australia’s major challenges and opportunities. This new flagship focuses our research across animal, plant and environmental science to more rapidly develop solutions to address Australia’s major biosecurity challenges.

Picture of man standing outside wearing a gray suit and looking at the camera

Dr Gary Fitt, Director of CSIRO’s new Biosecurity Flagship

Australians are aware of the damage that diseases, weeds, invasive animals and insects can inflict on crops, livestock, properties, farm profits and on human health. Biosecurity is all about preventing or keeping the impact of these threats and outbreaks to a minimum. Through research, we are working to reduce the risk of pests and diseases entering Australia, as well as improving the effectiveness of our mitigation and eradication responses.

We’ve traditionally tackled wildlife, animal and human diseases completely separately, but what we’re doing now through the Flagship’s integrated activities is taking a ‘One Health’ approach to understanding how these viruses spread between wild animals, livestock and people, and how to reduce the risks or be prepared for rapid response.

For instance, to deal with zoonotic diseases (those that can pass from animals to people), we’re adopting a more coordinated approach to understanding the multidimensional links between wild animals, livestock production, the environment and global public health.

CSIRO’s One Health approach has already been successful with the development of a horse vaccine against the deadly Hendra virus. Flying foxes carry the disease, although they are not affected by it, and the virus is lethal when transmitted to horses and from infected horses to humans.  By working together, we realised that there wasn’t much we could do to reduce bat populations, and vaccinating people would be too expensive and too lengthy a process. We identified the horse vaccine as the most direct and effective strategy for the protection of both people and horses, breaking the chain of virus transmission from flying foxes to horses, and then to people, and protecting the horses themselves from a devastating infection that would otherwise most likely lead to their death.

The improved coordination of biosecurity research through the Flagship will enable us to better safeguard public health, the environment and the economy into the future.  It will also greatly assist other countries as they too strive to deal with the pests and diseases that continue to spread globally and threaten general health.

Biosecurity is a system of shared responsibility across layers of government, which needs a statistically sound understanding of risk, pathways of entry, optimised surveillance and rapid diagnosis. Working with national and international research bodies, and the operational agencies responsible for delivering biosecurity, we will work across all these issues to jointly tackle biosecurity threats head on.

Next Thursday marks the official launch of the Biosecurity Flagship. To celebrate the launch, over the coming week we will feature a series of blog posts highlighting some of the Flagship’s activities.

We’ll also be featuring a special post from our guest blogger, author,  Nobel Laureate and 1997 Australian of the Year, Peter Doherty.

Join the Conversation: #bflaunch

About the Author

Photo of Gary FittDr Gary Fitt is Director CSIRO’s Biosecurity Flagship, and is focused on protecting Australia from the biosecurity threats and risks posed by serious exotic and endemic pests and diseases.


Get every new post delivered to your Inbox.

Join 4,739 other followers