Going with the throughflow

Hose spraying water

The backyard experiment any hose-owner can try. Image: Flickr / Scott Akerman

By Simon Torok

Here’s a simple backyard science experiment for you to try, which has global implications.

Grab a garden hose, turn it on, and then put your thumb over the end of it. The flow of water thins, while its power intensifies.

Okay, now multiply that by a few million and you have some idea of the impact of recent La Niña conditions on a major ocean current north of Australia.

The Indonesian Throughflow is a series of ocean currents linking the Pacific and Indian Oceans. It carries water from the Pacific to the Indian Ocean through the passages and straits of the Indonesian Archipelago.

Schematic of the ITF. Values of the flow and the major passages are indicated by red. Water enters the ITF from the western Pacific and exits into the Indian Ocean.

Schematic of the ITF. Values of the flow and the major passages are indicated by red. Water enters the ITF from the western Pacific and exits into the Indian Ocean. Image: Wikipedia.

Researchers – led by Janet Sprintall at Scripps Institution of Oceanography in the United States, and including Susan Wijffels from CSIRO in Hobart – have found that the flow of water in the Indonesian Throughflow has become more shallow and intense since the late 2000s due to La Niña conditions, just as the water flow thinned and intensified while you played with that garden hose.

The paper, The Indonesian seas and their role in the coupled ocean-climate system appears in today’s online publication of the journal Nature Geoscience.

The Indonesian Throughflow is the only place in the world where warm equatorial waters flow from one ocean to another; consequently, the throughflow is an important chokepoint in the flow of heat in the climate system.

The paper suggests that human-caused climate change could make this shallowing and intensification a more dominant feature of the Indonesian Throughflow, even under El Niño conditions.

Changes in how much warm water is carried by the Indonesian Throughflow will affect the sea surface temperature, and in turn the patterns of rainfall in our region.

So you may need to think a bit more about how you use that garden hose.


Young guns – our up and coming

Saad SayeefSaad Sayeef – Research Scientist – Energy

When clouds block the sun, solar panels and the electricity networks they are hooked up to need time to adjust to the fluctuations. Saad is working out how to maximise solar efficiency as part of the Energy Networks Team in the CSIRO Energy Flagship. He is looking at various solutions including smart grids, solar energy management and solar “forecasting”.

Beau_Leese

Beau Leese – General Manager – Strategy, Performance and Flagships 

Beau is responsible for the development and implementation of the CSIRO’s overall enterprise strategy, new strategic initiatives, science portfolio investment, planning and performance management, Impact 2020 and cross Flagship collaboration (phew). Beau led CSIRO’s operating model review and the startup phase of the integrated reform program. He is a member of CSIRO’s Executive Management Council, SICOM and Major Transactions Committee.

 

Lisa portraitLisa Harvey-Smith: Research Astronomer – Information Sciences

Lisa is CSIRO’s Project Scientist for the Australian Square Kilometre Array Pathfinder in WA.
The daughter of a Primary School teacher and a house-dad, Lisa left school at the age of 11 and taught herself at home, where her passion for astronomy developed. Her scientific publications span a number of fields from star formation, cosmic magnetic fields and gravitational lensing to supernova remnants. When not designing telescopes and studying galaxies billions of light-years away, she enjoys ultra-long-distance running, including 12 and 24-hour races. In 2012 she was appointed chair of the steering committee of the Women in Astronomy Chapter of the Astronomical Society of Australia.

Nick RodenNick Roden – PhD Student – Environment

Rather than chipping on to the 9th green on the professional golf circuit, Nick Roden is now looking at how different biological and physical processes combine to influence the carbon cycle in the waters around East Antarctica. A few years ago Nick, who is based in Hobart, decided that studying the biology of the waters around East Antarctica as part of a PhD had a brighter future than being a professional golfer, so Nick chucked in the clubs and joined CSIRO. We’re glad he did.

 

Vanessa (Ginny) Hill – Social Media Advisor – Communications

Vanessa Hill + Luna Vanessa is one of the team leading CSIRO into the digital age as far as social media is concerned –video content produced by Vanessa has had more than 13 million views on YouTube. Other platforms such as Twitter and news@CSIRO blog take CSIRO’s and Vanessa’s work to millions more each year.
Even when Vanessa is at home or on holidays – she keeps on tweeting and communicating science.

 

 


Mega-pest worms its way into Brazil

Helicoverpa armigera_5

By Wee Tek Tay, Research Scientist, CSIRO Biosecurity Flagship

We often speak of the risks of new invasions in our increasingly interconnected world, and stress the need for a strong and reliable biosecurity system to safeguard our borders.

As global trading and markets increase, it’s essential to develop our ability to detect incursions using new and innovative surveillance techniques combined with rapid identification capabilities.  This is important because Incursions by exotic pests and diseases have the potential to seriously impact Australia’s people, agricultural industries and unique environment.

And right now, a team of Australian and international scientists are working closely with colleagues in Brazil as one of the most destructive pests known to agriculture – the cotton bollworm (Helicoverpa armigera) – worms its way into Brazilian agricultural fields.

Helicoverpa armigera has long been recognised as a serious biosecurity threat to the Americas, where it has the potential to establish across the South and North American continent with far greater anticipated potential economic loss to corn and cotton than the closely related Helicoverpa zea which is endemic to the Americas.

Incredibly, despite being intercepted at US Ports of Entry a staggering 4431 times since 1985, this mega-pest had not been previously reported to take hold on the American continents.

In Australia, Asia, Africa and Europe, where cotton bollworm is considered native, the damage it causes is estimated to cost $US 2 billion each year. In the last two growing seasons, high infestations of Helicoverpa species larvae were found in different regions of Brazil, resulting in substantial economic losses of up to 10 billion Brazilian Reals ($US 4.4 billion).

A cotton bollworm larvae decimating a cob of corn

A cotton bollworm larvae decimating a cob of corn

At first it was assumed that the damage was being caused by Helicoverpa zea, because the cotton bollworm had never previously been detected within the country. However, as the scale of spread and destruction was monitored, the Brazilian scientists knew that something was different and suspected that maybe the dreaded incursion of Helicoverpa armigera had indeed begun. At this point, Brazilian scientists from the Mato Grosso Cotton Institute approached CSIRO researchers to assist in the careful identification of the species attacking their crops.

Our scientists, together with French and Indian colleagues from CIRAD and IRD in France and the Indian Council of Agricultural Research used evolutionary and population genetics to confirm that the cotton bollworm has now successfully invaded Brazil.

Along with the confirmation that the Brazilians are indeed dealing with a new incursion of a serious exotic pest, the international team led by scientists from the CSIRO Biosecurity Flagship and Matto Grosso Cotton Institute is providing further vital data that will assist Brazil to manage this new menace.

The next steps for the research team are to investigate where the moth originated, where they are currently distributed, its spread across the South American continent, and the incidence of resistance to key pesticides. This information, coupled with CSIRO’s extensive expertise in insecticide resistance management will assist Brazil to develop effective strategies to manage this mega-pest.

You can read the full research paper at PLOS ONE.


For media enquiries contact Emma Pyers: +61 3 5227 5123, emma.pyers@csiro.au


Defending ag from disease

Photo of the exterior of the Australian Animal Health Laboratory

The Australian Animal Health Laboratory in Geelong, Victoria

On-call 24 hours a day, seven days a week, diagnostic scientists at CSIRO are ready to respond should an emergency disease outbreak occur.

They could test 10,000 samples per day in an emergency, but as standard delivery, CSIRO scientists at Australian Animal Health Laboratory (AAHL) in Geelong, Victoria, test more than 45,000 samples for 55 terrestrial and 40 aquatic animal diseases every year.

Luckily, Australia is relatively free of many animal and human diseases found in other parts of the world, such as foot and mouth disease (FMD) and Nipah virus.

However, new infectious diseases, such as new strains of avian influenza, pose a constant threat to the health and wellbeing of animals and humans and pose a risk to Australia’s environment, industries and trade.

According to AAHL’s director Dr Kurt Zuelke, researchers are focused on reducing the threats of exotic and emerging animal diseases and, for example, are on standby with over 650 different tests covering a diverse range of animal species. “AAHL researches diseases of national importance found in livestock, aquaculture animals and wildlife, including those that can pass from animals to people,” Dr Zuelke said. “Our scientists are a front-line defence who help protect the country’s billion dollar livestock and aquaculture industries from disease threats on a daily basis.”

They play this defence role through performing diagnoses, establishing surveillance to monitor movements and emergences and if required, responding to animal disease emergencies. Better understanding diseases to develop diagnostic tests, vaccines and treatments is also crucial and CSIRO AAHL scientists lead the world on bat and insect-borne disease research. This is important for animal and human health as bats and insects are natural reserviours of a range of viruses and cause many of the world’s infectious diseases in both animals and humans.

Malaria and dengue, for example, are harmless to mosquitoes; blue tongue virus is harmless to midges; and Hendra, Nipah, and Severe Acute Respiratory Syndrome (SARS) viruses are harmless to bats – but all can be lethal to humans. AAHL also helps to train veterinarians in other countries to reduce the disease risks to Australia and is an official collaborating centre for capacity building in Southeast Asia. Recently, teams have visited Vietnam, Cambodia and Laos to train local veterinarians in disease diagnosis and testing techniques in their efforts to control and eradicate diseases such as FMD, classical swine fever and avian influenza. Importantly, this international work means Australia is more prepared with better threat assessments, surveillance and management options for many foreign diseases.


This article originally appeared in our 16 May Rural Press insert (pdf).

You can see what else we’ve been up to in our Rural Press Inserts Archive.


Crunchy carrots and fluffy bread – It’s all about the structure

Flickr/stephendl

Flickr/stephendl

By Li Day, Research Group Leader, CSIRO Animal, Food and Health Sciences

It’s a food’s structure that gives a carrot its crunch and a loaf of bread its fluffiness, and researchers increasingly believe that many of a food’s key properties relate to its structure.

Nature is able to assemble sophisticated structures and food is no exception, even right down to the microscopic scale. Food components such as protein, carbohydrate, fat and minor ingredients, when mixed, organise into a range of structures, and its becoming clear that many properties key to a food’s processability, nutritional and sensory qualities, and safety are related to its structure.

Plants are structured like honeycomb, called ‘cell wall’ structure. The video below clearly shows the defined cell walls in raw carrot – that’s why it’s crunchy!

A scanning laser confocal microscope video in 3D showing the defined cell wall structure of raw carrot (Video: Sofia Oeseth)

Most foods have a ‘fluffy’ foam structure that forms when air bubbles are incorporated into a liquid, like bread, ice cream and meringue. The microscopic image below shows dough with air bubbles (black), gluten (yellow), starch granules (green) and protein (red).

Dough under the microscope (Click for full size image)

Dough’s foam structure is full of air (Click for full size image)

Then there are suspensions, which are a bit like oceans, with a sea of solid particles (the ingredients) suspended within a major component that is a liquid (quite often water).  Think tomato paste, fruit juices and some sauces and soups.

Cooked pumpkin in water under the microscope (Click for full size image)

Cooked pumpkin cells suspended in water (Click for full size image)

The next microscopic image shows a suspension in 3D of cooked pumpkin in water. Notice how round the pumpkin cells are – that’s why pumpkin soup feels so smooth and creamy when we’re eating it.

Colloids, which have microscopic particles dispersed through another substance, are another type of structure. Milk is an emulsified colloid of liquid butterfat dispersed in a water-based solution. The third microscopic image is of milk, and the red dots are drops of fat dispersed throughout the liquid whey (black).

Microscopic image of breast milk

Milk has a colloid structure (Click for full size image)

There are other structure types as well – solutions, emulsions and gels, which all behave differently to each other.

The structure of a food affects the way we chew it, how it breaks down in our mouths and our perception of its texture and flavour.  And because each structure also breaks down differently in our digestive system, the release and bioavailability of small molecules such as minerals, vitamins and polyphenols is also different.

Because of all these factors, food structures are increasingly being recognised as important in technology innovation for the development of healthier foods.

And as there is increasing awareness that structure has a significant effect on the bio-availability of nutrients, the focus of developing nutritional guidelines is shifting away from the traditional approach of simply assessing the nutrient composition of foods.


CSIRO is hosting the Food Structures, Digestion and Health Conference on 21 – 24 October, which will discuss the role of structure in designing foods for nutrition and wellbeing.


Emerging tech creating a safer food chain

iStock_000021161362XLarge

By Mala Gamage and Kai Knoerzer

In recent years a number of emerging or new food processing technologies have been investigated, developed and to some extent implemented, with the aim of improving or replacing conventional processing technologies.

By reducing pathogens and invasive species from food products, these technologies have great potential for the treatment of products exported interstate or overseas, opening the doors for wider export markets.

Because they take advantage of different applications and gentler processing methods, they also often result in processed food with a ‘fresh-like’ quality.

And while they all use vastly different techniques, they’re all pretty impressive.

Photo of sesame seeds being subjected to cool plasma

Are these sesame seeds cooler now after a dose of plasma?

Cool plasma

Cool plasma isn’t only cool in temperature, it’s cool science.

Plasma is also known as the fourth state of matter (as well as solid, liquid and gas) and exists when the internal energy of a gas is increased to a state where the gas molecules become ionised.  This plasma phase contains a number of reactive species, such as ions, free radicals and also UV radiation, which are all effective in killing bacteria, fungal spores and insects, and can be used to inactivate pests on the product surface.

Photo of a Pilot-scale continuous, pentagonal Microwave tunnel

A continuous pentagonal microwave tunnel (including convection heating facilities) at our Food Manufacturing pilot plant in Werribee, Victoria.

Microwave Processing

Large scale microwaves are actually very similar to the microwave ovens most of us have at home, but usually have a higher power capacity, and conveying systems to transport products through a microwave tunnel, where they are heated with an electromagnetic field.

Microwave processing has recently been used to disinfest (inactivate insect pests) fresh food such as apples, capsicums, zucchinis and avocados, while maintaining the quality and freshness of the product.

The microwave technology also has great potential for the disinfestation of grains.

The effect of high pressure on bugs

The effect of high pressure on bugs

High Pressure Processing

Imagine 200 elephants, each weighing three tons, standing on a piston the size of a CD. That’s greater pressure than at the deepest point of the ocean, and is the amount of pressure that products face during High Pressure Processing (HPP).

The products are packed into tight vessels and subjected to pressures up to 600 MPa, or 6000 bars.

And while you might think that would crush the products, they actually only compress by about 20 per cent, although that’s enough to kill any bacteria and insects present.

And by the end of the process, the product usually finishes at the same size it started.

Photo of a collapsing cavitation bubble

A collapsing cavitation bubble

Ultrasound

Ultrasound is nothing but sound, but at a frequency so high that it can’t be heard by people.

It’s generated by vibrating plates (at 20,000 vibrations per second or higher) which leads to the formation of water vapour bubbles, called cavitation bubbles.

Once they exceed a certain size the bubbles violently collapse, creating very high pressures, temperatures and streaming. These harsh conditions can be used to get rid of pests from product surfaces, as well as cracks and crevices.

A schematic representation of electrons activating on the surface of pecan nuts. Or...pecan nuts covered with a lot of e-'s

A schematic representation of electrons activating on the surface of pecan nuts. Or…pecan nuts covered with a lot of ‘e-‘s

Low Energy Electron Beams

Electron beams inactivate bacteria, spores, fungi and insects through ionisation of the molecules in the pest.

The technology is actually very similar to the old, bulky tube TVs, where electrons are released from a hot electrode and accelerated and guided by magnetic fields onto the TV screen. Instead of the TV screen, the electron beam is guided onto the surface of a product.

Similar to cool plasma, it’s mainly effective on product surfaces, but can also penetrate to depths up to 1mm.

The technology is gaining traction in Germany for the organic treatment of grain seeds, where it completely inactivates pests without negatively affecting germination of the seeds.


About the Authors

Photo of Mala GamageDr Mala Gamage, Research Project Leader, CSIRO Animal, Food and Health Sciences

Mala has initiated research on the identification of innovative technological solutions for insect disinfestation in horticultural commodities, and evaluated the feasibility of using ultrasound, high pressure and microwave for the disinfestation of fruit flies.


Kai KnoerzerDr Kai Knoerzer, Research Project Leader, CSIRO Animal, Food and Health Sciences

Kai is working to enhance the nutritional value, convenience and quality attributes (such as fresh taste, colour etc) of processed foods through innovative food processing technologies, including high pressure, pulsed electric fields, microwave, ultrasound, and cool plasma processing.


Friday Fish Time

Common name: Blue Marlin. Scientific name: Makaira nigricans. Family: Istiophoridae.

Common name: Blue Marlin. Scientific name: Makaira nigricans.
Family: Istiophoridae.

Blue Marlin: This week a blue marlin washed up on a suburban Adelaide beach. It is thought this is the first time a marlin has been found in the cool waters of Gulf St Vincent where Adelaide sits.

Scientists from the South Australian Research and Development Institute think the fish took a wrong turn at Kangaroo Island and ended up in the Gulf.

They also think that the 3.2m long, 250kg marlin swan along the WA and SA coasts in the warm Leeuwin Current which at this time of year flows down the WA coast and around into the Great Australian Bight.

Below is a picture of the current (red turning to yellow and green as it cools) whipping around the bottom of WA. The second image shows the SA coast with the relatively warm water flowing around Kangaroo Island.

More images of the ocean currents around Australia can be found at the Bureau of Meteorology site which gets the information through the Bluelink program  run by CSIRO’s Wealth from Oceans Flagship in collaboration with the Bureau of Meteorology and the Royal Australian Navy.

Current

current2

Anyway, back to the blue marlin. There is a debate going on about the classification of the Atlantic blue marlin and the

Indo-Pacific blue marlin (Makaira mazara) as separate species. Genetic data seems to show that although the two groups are isolated from each other they are both the same.

The blue marlin spends most of its life in the open sea far from land and preys on a wide variety of marine life and often uses its long bill to stun or injure its prey.

Females can grow up to four times the weight of males and the maximum published weight is 818kg and 5m long.

Blue marlin, like other billfish can rapidly change color, an effect created by pigment-containing iridophores and light-reflecting skin cells. Mostly they have a blue-black body on top with a silvery white underside.

Females can spawn up to four times in one season and release over seven million eggs at once. Males may live for 18 years, and females up to 27.

National Parks and Wildlife officer Josh Edwards and PIRSA aquatic health officer Dr Shane Roberts help to transport the blue marlin found on Carrickalinga beach. Pic: SARDI

National Parks and Wildlife officer Josh Edwards and PIRSA aquatic health officer Dr Shane Roberts help to transport the blue marlin found on Carrickalinga beach this week.
Pic: SARDI


And bend and flex: Scott Watkins’ new generation of solar cells

We're proud as punch of Scott and his solar cells

Scott shows off his super slim solar cells.

Scott Watkins’ work on flexible solar cells has been called one of 10 ideas that could change your life. Scott is a research leader in organic photovoltaics, looking at ways to develop wafer thin televisions, light panels and low cost printable solar cells to roll out renewable energy.

As a key member of the Victorian Organic Solar Cell Consortium (VICOSC), Scott is working with Australia’s top researchers and industry leaders to produce prototypes of these organic solar cells and determine how they can be manufactured safely and efficiently.

And now, thanks to a nifty new printer, his team have developed the largest flexible solar cells in Australia. The plastic cells are ten times larger than previously possible, allowing them to be set into advertising signage, power lights or embedded into laptop cases.

Here’s a quick snippet of the new printer:

Since completing a Bachelor of Science and a PhD in Chemistry at the University of New South Wales, Scott has published over forty peer-reviewed papers, invented ten patent applications, and received many prestigious awards including the CSIRO Julius Fellowship.

“CSIRO has given me the opportunity to grow from being a chemist who makes molecules to leading a team of people who print solar cells by the metre. Turning basic research into real products is very exciting.”

Hugs all round

Hugs all round!

You can learn more about Scott’s work on Flexible Electronics on our website. Scott also tweets as @FlexElectronixx.

For more information on careers with us, head to our LinkedIn page.


We love our mums!

How would your kids describe what you do at work? In the lead up to Mother’s Day, we asked a bunch of CSIRO mums to tell us what their kids think they do in our labs, offices and communities around the country.

Introducing the mums of CSIRO!


Mother of invention

Megan Fisher

“Being a mum has certainly fine-tuned my organisational skills. My Outlook calendar is my new BFF.” – Megan Fisher

As part of our series in the lead up to Mother’s Day, Megan Fisher, Executive Manager of Intellectual Property and Licensing, tells us about a typical day at work and how her life has changed since becoming a mum. By the way, intellectual property is everything from inventions to designs and artistic works.

Tell us about a typical day.

A lot of my day is spent discussing with commercial people, scientists, and intellectual property managers within our organisation and outside, about how we can develop and commercialise technologies so we can get them out there to make a difference. That’s the CSIRO part. On either side of that there is the usual feeding, clothing and taxiing kids around.

Why did you get into science in the first place?

At school, I was very interested in home science, and not just because of the cooking but because I was interested in the science behind nutrition and how it helped us to function. At uni I focused on chemistry and biochemistry because this interest translated into wanting to understand how things worked at a molecular level.

Tell us about your children.

I have two great boys – one who is 10 and the other is 4.  My 10 year old is into everything – cubs, tennis, swimming and cricket – but his greatest passion at the moment is playing Minecraft. My four year old is full of beans, loves Ironmen and Clone Wars and has asked me to buy him a brown shirt so he can dress like Anakin Skywalker.

Has being a mum changed how you work? If so, in what way?

Yes! It has certainly fine-tuned my organisational skills. My Outlook calendar is my new BFF. I use it to schedule my work and home life, and the lives of my family.

How do you think your sons would describe what you do for a job?

They tell people that I am a scientist.

What one thing do you wish other people understood more about being a working mum?

I think all the people I work with have a good understanding of what it’s like to be a working mum. For me it’s knowing and accepting that even though you have left ‘work’ for the day there are still a few hours of work ahead before you can sit down with the iPad and surf the net.

What’s the best day you’ve had at work?

I’ve had many best days. I particularly like the days when you hear that a technology you helped with has progressed to the next stage of development with a company or become a product on the market or is helping a company grow.

What one invention would you like CSIRO to work on that would make a mother’s life easier?

Can I pick two? One would be an invention to help prevent or cure all those bugs that kids seem to pick up in the early years. Another invention would be something that automatically tells the kids to stop playing that computer game and physically removes them from the iPad/iPod/computer.

***

Did you know that CSIRO is a significant producer of intellectual property? We’re Australia’s largest patent holder, with 3582 live patents, 728 inventions, 275 trademarks and 83 plant breeder rights. More than three billion people around the world use one of our most famous inventions everyday…


Star mum

"My boys say that Mummy works the telescopes and she is an astronomer." - Kate Brooks

“My boys say that Mummy works the telescopes and she is an astronomer.” – Kate Brooks

At work, she operates radio telescopes across Australia to help astronomers learn more about the origins of the Universe. At home, she raises three energetic kids. Meet Kate Brooks, Deputy Head of Operations at Australia Telescope National Facility.

Describe a typical day.

My work day is a mix of emails, scheduled meetings, and impromptu conversations with staff from across the organisation but primarily with my boss and Operations staff at our observatory sites in NSW and Western Australia. There is not enough word space to describe what I do outside of my work day!

Why did you get into science in the first place? 

I always enjoyed physics at school but my passion to be a scientist really came about after completing a CSIRO Vacation Scholarship back in 1993. I loved working with scientists from all over the world, using high-tech facilities and working on really exciting projects.

What attracted you to work at CSIRO? 

After working overseas in Chile for several years I returned to Australia to take up a role with CSIRO Australia Telescope National Facility. I was attracted to working at an international observatory on a job that offered a mix of research as well as support and development work for our state-of-the art telescopes.

Tell us about your children. 

I have three wonderful kids, two boys, Alex aged 9 and Marcus aged 6 and our girl Carla, aged 3. Our boys are bright, active and very sporty and our little girl is into everything pink and certainly keeps her big brothers in line.

It's never a dull moment for this super mum of three!

It’s never a dull moment for this super mum of three!

How do you think your children would describe what you do for a job?

My boys say that “Mummy works the telescopes and she is an astronomer.”

Has being a mum changed how you work? If so, in what way? 

Absolutely. After years of travelling on the international conference circuit and frequently visiting telescopes and astronomy institutes in Chile, the US and Europe, I now keep my travel to an absolute minimum.

Gone are the days of cramming long work days (and nights) in the lead up to major deadlines. I have to carefully manage my time and always have some slack in my schedule in case my children get sick (which happens a lot in the first few years of daycare).

You can visit Australia Telescope National Facility to learn more about our world-class radio astronomy observatories.


More than 85 years of growth, change and impact

By Dr Megan Clark, CSIRO Chief Executive

Some of you may have seen a series of articles in the local media covering a range of topics in relation to CSIRO.  I would like to share with you the opinion piece, below, in response.

For 87 years, CSIRO science has been supporting Australia’s national growth. CSIRO has not done that by standing still, and over a decade ago a radical transformation of the way we deliver our science was undertaken.

To remain relevant to the nation and to answer the complex questions for society, we needed the courage to transform. For example it is no longer enough for farmers merely to have the best crop varieties.  For the next level of productivity they need the best farming systems, the best sensors, the best water efficiency and soil knowledge.  They need all of these answers delivered in a connected way.

Dr Megan Clark

Dr Megan Clark

CSIRO provides these answers through its flagship program, multidisciplinary challenge-focussed groups that bring together the best minds and research.  Was this the right decision? Yes it was, and others around the world agree with us: the Grand Challenges program in Canada and the INRA metaprogrammes in France are just two examples of similar responses. But to maintain the solutions focus requires a balance with science excellence.

We hold ourselves accountable to those who are passionately committed to quality science, our former employees, our clients and the Australian public and I agree with those who demand science excellence.  How do we do this? We subject our experiments, our papers, our fields of research, our output and our operations to rigorous scrutiny.

Each flagship and research division brings in a team of international experts every three to four years. The experts examine many dimensions of our work, make recommendations and when we receive criticism we act.

We respond by increasing investment in some areas of science, building on areas and exiting from others, making decisions that balance our budget constraints with our science goals. If a review shows we are not performing in a science area, we build, we exit or we transform that area.  There is no standing still in CSIRO.

For example, in 2009 the Earth Sciences and Resource Engineering review decried the publication rate. In only three years this rate has doubled. CSIRO’s geoscience standing has for the first time entered into the ranks of the top 0.1 per cent of global institutions. And this has been achieved at a time when technology from this division is helping the mining industry in 19 of the 31 Australian long wall mines, for both productivity and safety gains.

As some have feared, the CSIRO transformation has not curtailed our science.  Here are some of the facts: Our ranking is in the top ten of all institutions in the world for three scientific fields: environment/ecology, agricultural science, and plant and animal science.  This is equal with the standing of research heavyweights such as Oxford and Yale Universities, an extraordinary achievement for an Australian institution.

In 2012 we had record engagement with industry, record licenses of our IP and a record publication rate. Our mandate as an applied science organisation goes beyond research. CSIRO is Australia’s largest patent holder with 3582 live patents, 728 inventions, 275 trademarks and 83 plant breeder rights. We have particular strengths in measurement, biotechnology, materials (metallurgy) and computer technology, winning the prestigious European Inventor Award from the European Patent Office last year for the CSIRO team that invented fast wireless LAN.

CSIRO partners with 38 of the 40 universities in Australia and has connections with 72 countries. These relationships help train future researchers and build international scientific connections. We recruit, train and mentor hundreds of young scientists each year in schools, as university students and as doctoral candidates.

Building science capability for Australia is an important part of CSIRO’s culture.  We know our people like the work and find it meaningful.  Exit interviews invariably tell the same story “I loved my work here because I knew it was making a difference”. Our externally conducted staff survey tells us our people are more engaged than ever before.  Our absentee rate is less than half that of the Australian Public Service and our turnover is low.

This contemporary view of CSIRO as evidenced in our staff measures, has also been validated by our external clients. In a recent pilot client survey, the average willingness-to-recommend score was 8.6 out of 10. Our long term research alliances with Boeing, GE, Orica and many others are a further validation of our contribution to industry.

We do have areas to improve.  We have had claims of unacceptable behaviour made by former employees and I have addressed those directly. A number of internal actions are in place as well as an independent external review which is underway.  CSIRO has been criticised by some for being silent on this issue but we must respect the privacy of all involved and it is not appropriate to discuss or defend details of alleged cases in public.

The men and women who work at CSIRO are among the most passionate, committed and hard working in Australia. It is a privilege to lead CSIRO and I am proud of the evidence I get every day of the difference we make to the lives of Australians.


The search for lost Apollo 11 tapes

By John Sarkissian

About the author

John is an Operations Scientist at the CSIRO Parkes Radio Observatory. His main responsibilities are operations and systems development, and the support of visiting astronomers with their observations. John is a member of the Parkes Pulsar Timing Array team that is endeavouring to use precision pulsar timing to make the first direct detection of gravitational waves. In 1998–99 he acted as a technical advisor for the film The Dish. John has received two NASA Group Achievement Awards and, in 2010, received an official NASA commendation for his search for the missing Apollo 11 tapes.

UPDATE: They have found the engines. How hard can it be to find some video tapes!

It was one giant leap for mankind and it was taken at 12:56 PM (AEST) on 21 July 1969. Six hundred million people, one sixth of mankind at the time, witnessed the Apollo 11 moonwalk live on television.

368235main_Apollo_11_2_minute_montage_HDthumb

As a six-year-old school boy, I was one of those millions. Sitting cross-legged on the floor of the school assembly room with my fellow first graders, we watched the events unfold on a small black and white television screen perched at the front of the assembly room. We were spellbound by the dark, fuzzy images flickering on the screen. How did they do it? How did those pictures get from the Moon to my Sydney school? Why were the pictures so dark and ghostly looking?

Little did I know then, but three decades later I would find myself working at the CSIRO Parkes Observatory, at the very place those images were received and that I would have the opportunity to answer those childhood questions. This article is a personal account of my research into the Parkes support of Apollo 11 and how it eventually morphed into a search for the missing Apollo 11 tapes. It’s been a roller-coaster ride, with many highs and lows plus a few twists and turns to make it interesting. Along the way, I’ve met many fine and dedicated people, some of whom are now close friends. This is our story.

Some background

At 12:54 PM (AEST) Buzz Aldrin switched on the lunar module camera that would transmit the TV pictures of Armstrong descending the lunar module ladder. Three tracking stations received the signals simultaneously. They were the 64-metre Goldstone antenna in California, the 26-metre antenna at Honeysuckle Creek near Canberra and the CSIRO 64-metre dish at Parkes. The signals were relayed to Houston, where a controller selected what he thought were the best pictures for release to the US television networks and distribution to a worldwide audience.

In the first few minutes of the broadcast, Houston alternated between its two stations at Goldstone and Honeysuckle Creek, searching for the best quality pictures. When they finally switched to Parkes, the pictures were so much better that they stayed with Parkes for the remainder of the 2½ hour moonwalk. From an analysis of the videotapes of the Extra Vehicular Activity (EVA) and of a recording of the NASA NET 2 communications loop (which controlled the TV reception), the timings for the TV switches are shown below.

Time (mm:ss) Video Transmission

00:00 TV on (upside down) Picture is from Goldstone (GDS). Time is 02:54:00 (GMT)

00:27 Picture is inverted and is now the right way up. Very dark, high contrast image

01:39 Houston TV switches to Honeysuckle Creek (HSK)

02:20 Armstrong steps onto the Moon. The time is 02:56:20 (GMT)

04:42 Houston TV switches back to GDS. Picture is negative

05:36 Houston TV switches back to HSK

06:49 Houston TV switched back to GDS. Picture is positive again but still dark

08:51 Houston TV switches to Parkes (PKS). Remains with Parkes for the remainder of the 2½ hour lunar EVA

From these timings, and other evidence, it is clear that at the start of the EVA, Goldstone was experiencing problems with its TV, resulting in high contrast, dark images. The Honeysuckle Creek pictures were better but they suffered from a lower signal- to-noise ratio, thus resulting in grainier images. The pictures from Parkes were the best of the three and it was these that NASA broadcast for the majority of the lunar EVA.

Television from the Moon

The Apollo Lunar Surface Camera was developed by Westinghouse and was a technological marvel of its time. The lunar module was power and bandwidth limited, so it was not possible to transmit commercial standard TV directly from the Moon. Instead, a slow-scan TV (SSTV) system was used that required less power and bandwidth. The SSTV system transmitted b/w pictures at 10 frames-per-second with only 320 lines-per-frame. In order to broadcast this to the watching world, it had to be scan-converted on Earth to commercial TV standards. An RCA scan-converter was used that operated on an optical conversion principle. It was a simple system that worked well on previous Apollo missions. Essentially, as each single SSTV frame was received on Earth, it was displayed on a small 10-inch b/w slowscan monitor. A Vidicon camera was pointed at the screen and imaged the frame at the standard commercial TV frame rate. It was the output of this camera that was broadcast to the world. In this way, a 30 frames-per-second, 525 lines-per-frame, TV picture was achieved. As you can imagine, it’s not an ideal method of scan-converting the pictures but it seemed adequate at the time.

Chief of the CSIRO Radiophysics Division, Dr Edward 'Taffy' Bowen (right), with Dr John Shimmins, deputy director of Parkes Observatory, in the control room watching the moonwalk (21 July 1969).

Chief of the CSIRO Radiophysics Division, Dr Edward ‘Taffy’ Bowen (right), with Dr John Shimmins, deputy director of Parkes Observatory, in the control room watching the moonwalk (21 July 1969).

The Goldstone TV was scan-converted on site and relayed directly to Houston via microwave relays and landline. The Honeysuckle Creek TV was scan-converted on site also, and relayed to the Overseas Telecommunications Commission (OTC) Paddington terminal in Sydney, referred to as ‘Sydney Video’. Meanwhile, the Parkes baseband signals were relayed to Sydney Video, where the TV was separated from the telemetry stream and scan-converted there.

At Sydney Video, a NASA controller would select the best of the Honeysuckle Creek or Parkes pictures, and pass that selection on to Houston. His selection would simultaneously be recorded on to 2-inch videotape on an Ampex VR660 recorder. The selected TV would be sent via microwave relays to the Moree Earth Station in northern NSW, then via the Intelsat III geostationary satellite to the United States and then finally along the AT&T landlines to Houston. At Houston, the controller would select the best of the Goldstone or Australian feeds for worldwide distribution. In a further twist, the Australian selection at Paddington was split and sent to the ABC Gore Hill studios for distribution to Australian networks. Consequently, the Australian TV did not have to travel via satellite to the US and back again. This meant that a transmission delay was not present, so Australian audiences watched the moonwalk 300 milliseconds before the rest of the world!

It is clear that scan-converting the SSTV and relaying it to the world was not an ideal situation. Firstly, the picture being displayed on the scan-converter monitor had to be adjusted manually. This was a subjective exercise, as the scan-converter operator had to adjust the brightness and contrast settings to what he thought produced the best looking picture. Unfortunately, the operator at Goldstone was inexperienced, and with the pressure of the moment, he got it wrong. At Sydney Video, the operator, Elmer Fredd, was vastly more experienced. He had helped design the scan-converter and knew it well. In December 1968, he had converted the TV pictures from Apollo 8 at Goldstone. It was no accident therefore, that the Parkes pictures looked the best. In addition, the slow-scan monitors in the scan-converters used high persistence phosphor screens so that the pictures could persist long enough for the Vidicon camera to image them. Unfortunately, a side effect of this was that the images, especially of bright, moving objects (like astronauts), persisted between frames, resulting in the ghosting of the images. Another problem was that the scan-conversion process, introduced additional signal noise and a lower resolution picture.

To make matters worse, relaying the signals via microwave relays, landlines and geostationary satellite added even more signal noise and transmission errors. The result of all these systematic problems was that the TV that the world saw was severely degraded and compromised. We could do much better today. As the video and telemetry downlink was being received at the stations, it was recorded onto 1-inch magnetic data tapes at a rate of 120 inches-per-second. These tapes had to be changed every 15 minutes for the entire duration of the moonwalk. Clearly, if we could find these tapes, we could replay them and recover the original SSTV pictures. With modern image processing techniques, we could enhance them even further and release them to the public.

"The Dish"

“The Dish”

The tape search begins

Soon after arriving at Parkes in 1996, I learned of a minor controversy about the exact time that the first TV from the Moon was received at Parkes. The Director of the Parkes Observatory at the time, John Bolton, had always insisted that he had received the TV signal from the very beginning when the camera was switched on at 12:54 PM (AEST).

The Moon was not scheduled to come into view at Parkes until 1:02 PM – a full eight minutes later, so there was some doubt. However, I soon learnt that there were two feeds installed in the focus cabin on the day. Realising that the moonwalk was imminent, Bolton was able to receive the signals with the less sensitive off-axis receiver. He carefully aligned the off-axis beam on the Moon and was able to track it until it reached the telescope’s 30-degree elevation horizon at 1:02 PM, after which he could track it normally with the main beam. My calculations showed that this was indeed possible, but I wanted to know for certain. Also, the signal being received by the off-axis feed would have been unstable and probably of a much lower quality, so I wanted to know by how much. I thought that if I could find the original data tapes that contained the signals recorded at Parkes, I could replay them and confirm my conclusions. At this time also, there was still some doubt about the sequence of switches in the broadcast of the TV, so by finding the tapes from the other stations, I could compare their picture quality with the existing video recordings and determine the sequence for certain. A bonus was that we could also recover the original SSTV, which I knew by then was of a much higher quality.

Beginning in the late 1990s I contacted various NASA centres requesting the whereabouts of the data tape recordings. I made countless phone calls, wrote emails and letters to whomever I thought might know where the tapes were located. But, it was all to no avail. No one seemed to know where the tapes were. In fact, many had trouble understanding what exactly I was after. I was convinced that the tapes must still exist somewhere, but where? In 2001 I obtained a Polaroid picture taken directly off a slow-scan monitor at Sydney Video. When compared to the existing scan-converted video image of the same scene, it clearly showed how much better the original SSTV was to the scan-converted videos. So, I persisted.

Also in 2001, the film The Dish premiered in the US and this prompted several past and present NASA personnel to contact me. Three in particular became good friends and search team members. Stan Lebar was the retired Westinghouse engineer who, in 1969, was the program manager for the Apollo Lunar Surface Camera. Dick Nafzger was the Goddard Space Flight Center (GSFC) engineer responsible for all ground systems hardware in support of Apollo TV in 1969, and was still with NASA. Bill Wood was a retired communications engineer who was based at Goldstone in 1969. The search team was completed when, in 2002, I was contacted by Colin Mackellar, who is an amateur historian and the webmaster of the Honeysuckle Creek website. He is a trained geologist and an Anglican minister in Sydney. Together, we joined forces to search for, and recover, the SSTV recordings.

A breakthrough occurred in 2002 when a former technician from Honeysuckle Creek contacted his former colleagues and Colin Mackellar. He admitted that, in 1969, he had made an unauthorised copy of a data tape that he believed contained telemetry from the Apollo 11 lunar EVA. This caused great excitement. The tape had been stored in his garage for 33 years in less than ideal conditions. If it still contained data, the possibility existed that the SSTV could be recovered from it.

Former Honeysuckle Creek personnel, Mike Dinn and John Saxon organised to have the tape transported to the Data Evaluation Lab (DEL) at the GSFC by the NASA representative in Australia, Neal Newman. The DEL contained the only machines in the world that could play and decode the Apollo data tapes. At the DEL, Dick Nafzger replayed the tape with his team. Unfortunately, they discovered that the tape only contained data from a 1967 simulation. The technician had copied the wrong tape. As heartbreaking as this was, it had a positive effect. People suddenly understood what we were after and why we were looking for it. We confirmed that the equipment to replay the data tapes still existed and, most importantly, that even after 34 years the tapes could still retain data.

In 2005, spurred on by this and by new Polaroids from Honeysuckle Creek, Stan and Dick visited the US National Archives in Washington, where all the data tapes from the Apollo era were deposited in the early 1970s – all 250,000 plus tapes. Unfortunately, their search only uncovered a single box of tapes containing Apollo 9 telemetry. The label on the box had details that allowed us to continue the search. Soon after this discovery, we received the alarming news that the DEL was slated for closure in 2006. This would be a disaster because, without the DEL, there would be no way to replay the tapes, and recover the SSTV, if they were ever found. Something had to be done.

The formal search

In February 2006 I visited the DEL and also gave a series of talks at various NASA centres to explain our search. On my return, I compiled a report which slowly began to stir people’s attention. Two months later in July, Stan and Dick were interviewed on national radio on the anniversary of the Apollo 11 mission.

Finally in early August, The Sydney Morning Herald posted a front-page story with the provocative headline ‘One giant blunder for mankind: how NASA lost moon pictures’. This caused a major stir with the story going viral on the internet and news reports appearing on the American TV networks and other news organisations worldwide. Interest became so intense that in August 2006 the NASA Administrator, Michael Griffin, formalised the search and appointed the GSFC deputy director, Dorothy Perkins, to head the search. Dick was the technical lead. The first decision made was to not close the DEL.

With the full resources of NASA brought to bear on our search, we were confident that we would now finally locate the tapes and release the SSTV to the public by Christmas. But it was not to be. Soon after the formal search began, documents were found that suggested that the tapes may have been erased in the early 1980s. This was disturbing news. We were searching for just 45 tapes from over 250,000 tapes of the Apollo era. Surely, these few would have been put aside for historical reasons. Meanwhile, Colin and I followed up leads from the Australian end and provided advice. In the US, our colleagues Stan, Dick and Bill became first-class sleuths. They tracked down long retired personnel and uncovered dusty documents from NASA archives, people’s attics and basements.

Slowly and surely, the evidence mounted. We discovered that in the late 1970s and early 1980s NASA had withdrawn all the Apollo era data tapes from the National Archives and erased and recertified them for later use. But why? Apparently, these tapes were manufactured using whale oil to adhere the oxide to the backing. However, in the mid-1970s, the use of whale oil was banned and manufacturers switched to using synthetic oils. The drawback was that if the synthetic oil-based tapes were not stored correctly, they would absorb moisture from the air which made them sticky. Played back at high speed, they would stick to the recording heads and be shredded to pieces. The older Apollo era tapes didn’t suffer from this drawback.

As NASA’s budget was cut back severely in the late 1970s, the need for more tapes to record the increasing volume of data from satellite programs became acute. The enormous number of tapes in the National Archives was now seen as valuable assets. Over a period of several years, they were all removed, erased and recertified. The labels on the tape canisters were cryptic and there was little way of knowing what each of the tapes contained. Our team didn’t find any evidence that the tapes containing the Apollo 11 lunar EVA data were treated differently to the others. We reluctantly concluded that the tapes were, in all likelihood, erased and reused with the rest.

You can imagine how we felt. To understand why the tapes were treated this way, it’s important to realise that they were never intended to be the primary archival media. In fact, there was never any expectation that the magnetic data would survive more than a few decades. They were only meant to act as backups for the real-time communications relays and other data. If there was a failure during a mission, the tapes could be used to recover the information. If however, all went well, then the tapes were no longer necessary. All the vital information was extracted in real-time and archived for analysis at the relevant NASA centres. The TV was successfully seen by the world and the scan-converted video was properly recorded onto archival b/w film that would last for centuries. Few people outside of the tracking stations were even aware of the SSTV or how much better it was. As far as everyone was concerned, all the data was believed to be properly archived – at least until we came along.

The NASA report HERE

The restoration

What to do next? In late 2006 Colin noticed a video clip on Eric Jones’ Apollo Lunar Surface Journal website. It showed Armstrong descending the lunar module ladder that was much clearer than anything we’d seen before. We learnt that the clip was sourced from someone who had previously worked at the GSFC. It appears that he found an old 2-inch videotape of the lunar EVA and made a crude VHS video copy of it. We obtained a copy of this videotape and found that it was most likely a copy of the video recording made at Sydney Video of the Australian selection.

It contained the clearest pictures of Armstrong descending the ladder sourced from Honeysuckle. It also showed the switch to Parkes earlier than in any other known recording. Unfortunately, when the original copy was made, the Ampex recorder was not setup properly and this produced a jittery image with many defects. We spent the next few months searching for the original 2-inch tape, but it has mysteriously gone missing. Early in the search Colin was contacted by Ed von Renouard, the former scan-converter operator from Honeysuckle. On the day of the lunar EVA, Ed had brought his home movie camera to work and recorded footage directly off the screens of his console. One of those scenes was the dumping of the astronauts’ portable life support systems, or backpacks. This occurred several hours after the astronauts had re-entered the lunar module and the TV networks had by then ended their broadcasts. Consequently, as far as we could determine, no other footage existed of the dumping. During the search, we came across many archived copies of the scan-converted TV. We decided to switch our search to finding the best of these scan-converted videos and have them archived properly. We also decided to digitise them along with the Sydney Video and Honeysuckle footage. We would take the best parts of each and compile and restore them into a single video of the lunar EVA.

In 2008 we had a demo restoration produced of selected scenes, which we used to convince NASA to underwrite the $245,000 cost of the full restoration. A week later, Neil Armstrong visited Sydney to address the CPA Australia 125th anniversary celebrations. During his address, Neil Armstrong paid a glowing tribute to the many Australians who worked at the tracking stations and helped to ensure the success of the Apollo 11 mission. Some were present in the audience and were individually acknowledged by him. In a brief ceremony following the event, Armstrong symbolically handed over the Australian disks to Dr Phil Diamond, the then-Director of CSIRO Astronomy and Space Science (CASS) – the custodian of the disks in Australia. He noted that ‘”the restored video is a valuable contribution to space exploration and space communication history”.

This ceremony effectively brought the restoration effort to a close. The Australian disks will eventually be deposited in permanent archival storage, most likely with the National Film and Sound Archive in Canberra. The restored Apollo 11 video can now be purchased online from www.apollo11video.com

The proceeds will go toward the continued search and restoration of the other Apollo mission videos.

Hope remains

In early September 2006, soon after we first received news that the tapes may have been erased, I received a phone call from Peter Robertson, the editor of Australian Physics magazine. He had seen the news items regarding the missing Apollo 11 tapes. He phoned to tell me of a letter he had received from John Bolton in the early 1990s. Bolton had mentioned some videotape players that were in the Parkes control room during the Apollo 11 mission. I informed Peter, that we weren’t looking for videotapes but rather magnetic data tapes containing telemetry of the mission. I asked him to send me a copy of the letter anyway.

For many years, I had photographs from the CASS Photo Archive of scenes taken inside the Parkes control room during Apollo 11. Several photos showed a man standing beside Ampex VR660 2-inch videotape players. The Ampex players could only record standard television pictures, so I had no idea what they were doing at Parkes. I also didn’t know who the man standing beside them was, or what he was doing there.

A few days after Peter phoned, the Bolton letter arrived and I was stunned. The letter did indeed describe the Ampex video recorders and, more importantly, Bolton mentioned that they came with their own engineer from Johns Hopkins University in Baltimore. Could this engineer be the mystery man? I knew that Johns Hopkins was the home of the Applied Physics Laboratory (APL), a regular NASA contractor.

In late November 2006, we received definitive evidence that the tapes had been erased. It was then that I sent the information on the possible identity of the engineer to my US colleagues. They immediately set out to find him. Within a few weeks, they found old newsletters from APL that positively identified him. He was contacted and interviewed by Bill and Stan. What he told them lifted our spirits. According to the engineer, in April 1969, the APL was contracted by the GSFC to modify existing Ampex VR660 video recorders to record the non-standard SSTV at Parkes. He was put in charge of this crash program. It was to be an experimental backup recording in case the TV could not be relayed to Houston. This secondary recording was only made at Parkes and if it worked, it could be used on future missions. He reported that the recording succeeded and that he returned to the US with two reels of 2-inch videotape containing the SSTV.

The whereabouts of this videotape was now a mystery. An extensive search was conducted at APL that turned up two tapes that seemed to match the description. Dick organised the loan of an Ampex VR660 video player and a slow-scan monitor from two museums. His team played back the tapes at DEL and found that they were all blank. Again, we were disappointed. Importantly, there was no documentation to suggest the tapes were erased or destroyed. We are working on the assumption that they still exist somewhere, so our search for them continues.

The most striking thing for me was how, just as we were at our lowest ebb, John Bolton appeared, from beyond the grave, to direct us in our search. It was like he was saying, “Hey, look over there. That’s where you’ll find what you’re looking for.” Hope remains.

Links:

More information on the Parkes Apollo 11 support and the search for the tapes can be found here:

http://www.parkes.atnf.csiro.au/news_events/apollo11/
http://www.parkes.atnf.csiro.au/news_events/apollo11/apollo11_sstv_search_report.html

This is the official NASA search report release in 2009:
http://www.nasa.gov/pdf/398311main_Apollo_11_Report.pdf

This is the page setup in 2009 to publicise the Parkes Apollo 11 40th Anniversary:
http://www.csiro.au/science/Apollo-11-and-Parkes-telescope

This is the site for purchasing the Apollo 11 restored video DVD:
http://www.apollo11video.com/

Acknowledgments

I wish to express my gratitude to Professor Marcus Price, officer-in-charge of the Parkes Observatory in 1997, for asking me to research the Observatory’s support of the Apollo 11 mission, and to Dr John Reynolds, officer-in-charge from 1999–2008, for his continued support throughout. I also thank Marshall Cloyd for giving me the opportunity to search for the tapes a little closer to the source in the United States. Finally, to my friends Bill, Dick, Colin and Stan – thank you.


Octopus, spaceship, or virus?

By Jayden Malseed

They say a picture’s worth a thousand words, but we’re hoping these brightly coloured images can tell an even bigger story.

At first glance you may think the image below is part of an octopus tentacle, or maybe the underside of an alien spaceship from the 1996 movie Independence Day, or perhaps even something else entirely.

Microscopic blue and green image of a ferret's kidney infected with Hendra virus

Is it an octopus? Is it a spaceship?…nah…it’s only 200 microns wide!

It’s actually a section from a ferret’s kidney that is infected with Hendra virus,  and has been taken with a confocal microscope.

Now this isn’t just your ordinary microscope. Costing roughly $750 000, the microscope is designed to focus on fluorescent colours that have been ‘tagged’ to specific components, which then show up on a big computer screen, giving us these incredible pictures.

The green highlights are the cells that have been infected by Hendra, while the blue highlights are the cell nuclei. To create this picture an antibody is dyed fluorescent green, which then attaches to the viral proteins, effectively colouring it green.

The vital research, led by microscopist Dr Paul Monaghan, uses these images to study the cell biology of Hendra virus. The confocal microscope, which is located within the high containment facility at our Australian Animal Health Laboratory in Geelong Victoria, helps Paul and his team better understand the virus, and to be able to answer questions such as why it attacks certain cells, and what it does when it gets to a cell.

“We’re developing a deeper understanding of the virus by using the microscope and the images, and if we can pinpoint a specific stage in the virus lifecycle and say to ourselves ‘this is the point we need to stop it’ then that would be enormous”, Paul explained.

This is a confocal image of tissue culture taken 18 hours after inoculation with Hendra virus, and is about 100nm wide

This is a confocal image of tissue culture taken 18 hours after inoculation with Hendra virus, and is about 100nm wide

The two images to the right are slightly different from the first. Where the first was a section from a kidney, these are taken from cells growing in tissue culture. We have also labeled two virus proteins: one red and one green.

They demonstrate how the Hendra virus has infected the cells, and after 14 hours has fused those cells together to form what is called a syncytium. The green/blue round circles are the nuclei – normally one in each cell – but the rest of the cell is relatively unaffected.

This is a confocal image of tissue culture taken 124hours after inoculation with Hendra virus, and is about 100nm wide

…and after 24 hours.

After 24 hours, the infection has progressed and newly made virus proteins are gathering at the edge of the cell (next to the black areas) to form new viruses. The red and green proteins are now together and can be seen as an irregular orange line at the edge of the cell.

These images allow Paul and his team to study the virus at different stages of its lifecycle, and and will be incredibly helpful for future research with Hendra virus and other related viruses that threaten the biosecurity of our animals, people and environment.

This research is part of our wider program of work on bats and the viruses they carry.


How did amateurs compare with pros at the Tour Down Under?

By Ken Taylor, Research Scientist, CSIRO ICT Centre

Serge Pauwels (left) rode conservatively during stage 4 of the Tour Down Under. AAP Image/Benjamin Macmahon

Serge Pauwels (left) rode conservatively during stage 4 of the Tour Down Under. AAP Image/Benjamin Macmahon

If you’ve ever watched a professional bike race such as the Tour de France on TV, you might have thought to yourself: “Just how good are the professionals?” And if you do a bit of cycling yourself, you might be inclined to wonder: “How much better are they than me?”

Using data from the 2013 Tour Down Under – held in late January in and around Adelaide – I was able to compare the efforts of amateur recreational cyclists against those of professionals in the race.

On Stage 4 of the Tour Down Under more than 6,500 recreational cyclists took part in the Bupa Challenge Tour, riding along the same route as the professionals just a few hours before the race.

Of the 6,500 cyclists that took part in the recreational event, 950 recorded their ride using the popular “social fitness” website Strava. I was then able to analyse this wealth of shared data to compare the efforts of amateur cyclists with the efforts of professional rider Serge Pauwels from the Omega Pharma-Quickstep team.

Serge Pauwels from the Omega Pharma-Quickstep team. Petit Brun

Serge Pauwels from the Omega Pharma-Quickstep team. Petit Brun

While German sprinter Andre Greipel won that Tour Down Under stage at the head of the peloton, Pauwels finished 42nd as part of the same group. This meant that Pauwels’s time was considered equal to that of Greipel’s.

As Pauwels remained in the peloton all day, riding conservatively, his effort represents the minimum needed to ride with the pros on a fast stage that averaged 41.5km/h.

So how did the non-pro riders perform over the same course?

While there could be a difference in the effort put in by pros and amateurs – for a start, the pros were racing and the public were not – many riders seem to have been giving it their best, particularly the faster amateurs.

As Kalvin Bartlett, the 10th fastest amateur rider on the day (from those on Strava) said: “… some people need to distinguish between a charity ride and a race”.

The amateur riders also had to be motivated enough to turn up and choose the full 127km of Stage 4 rather than one of the shorter alternatives available on the day. This would suggest that the riders in question are all reasonably strong.

(If you didn’t ride in the Bupa Challenge you can get a rough idea of how you would have gone by comparing your average speed over a long ride to that of the amateur field below. You’d have to be able to average a punishing 26km/h including rest stops to make the top half of the amateur field in the Bupa Challenge Tour.)

4bvdjds9-1359956237

The image above shows that Pauwels and the rest of the riders in the pro peloton were 4.4 standard deviations faster than the mean of everyone else and a full 5.7km/h faster than the quickest amateur.

How did they do it?

Well the obvious answer would be “they pedalled harder” but as it turns out, for the best of the amateurs, this isn’t the case.

A cyclist generates power to propel the bike forward, and this is measured by multiplying the force they exert on the pedals by how fast the pedals are rotating. Power is lost to air drag, rolling resistance and fighting gravity as they climb hills.

The heavier the cyclist, the higher the power they should be able to produce. As such, Serge Pauwels’s weight of 64kg makes his average of 223W more impressive than if he’d been, say, 80kg.

A cyclist can produce high power for short intervals but this will leave them tired. Each cyclist has a maximum amount of power they can produce over any particular interval. These best efforts can be shown in a curve compiled from their highest power over multiple efforts.

The image below compares Pauwels’s previously established best-effort power curve (dashed blue line) against his power curve for stage 4 (dashed red line) and the power curves of the four fastest amateurs (as per Strava) that had power meters during the Bupa Challenge Tour.

Despite going much faster Serge Pauwels produced less power than some other riders. Rider speeds are speed while moving and speed including rest stops. Ken Taylor

Despite going much faster Serge Pauwels produced less power than some other riders. Rider speeds are speed while moving and speed including rest stops. Ken Taylor

This image shows that Pauwels rode at his long-distance best but fairly conservatively – that is, he was well below his best over shorter intervals.

This conservative riding would have helped Pauwels stay fresh enough to achieve strong results in later stages of the six-stage tour. In turn, these strong results allowed him to finish the Tour Down Under in 20th place overall.

Three of the amateurs produced a higher average power than Pauwels, including one who recorded 243W – nearly 10% more than Pauwels’s 223W.

And one of the amateurs, “Spartacus Flying Scotsman”, was able to ride more conservatively (i.e producing less power in short intervals – see figure 3 above) while producing more power overall.

But Pauwels was more efficient, riding at a higher average speed from a lower average power than all of the amateurs.

Just how efficiently Pauwels rode can be seen by plotting speed against power, for all riders who uploaded power meter data to Strava (as seen in figure 4 below). Only 28 of the 950 riders used power meters and of these four were identified as unreliable and excluded.

crsm7syj-1359954352

Power vs speed for the 2013 Bupa Challenge, Tour Down Under Stage 4. Unexpectedly, the relationship is approximately linear for all but the pros despite air drag being proportional to velocity cubed. Ken Taylor

The power required to overcome air drag is proportional to a rider’s velocity cubed (i.e. the drag increases dramatically the faster you go). And yet the power vs speed relationship for the amateurs is approximately linear.

This is unexpected, but because Pauwels is well below the trend, it emphasises just how efficiently he rode.

So, to keep up with the pros, the average Bupa Challenge rider needs to produce an additional 50W – an increase of a little more than a third – and ride much more efficiently to increase their speed by more than 50%.

And for the rest of us, matching the pros is an even more difficult task – most probably couldn’t ride 127km at any speed.

Ken Taylor has previously conducted cycling research funded through a CSIRO and AIS partnership. See http://www.csiro.au/en/Organisation-Structure/Divisions/Materials-Science–Engineering/CSIRO-and-AIS.aspx .

He works for CSIRO.

The Conversation

This article was originally published at The Conversation.
Read the original article.


Follow

Get every new post delivered to your Inbox.

Join 2,858 other followers